18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Omni-tomography: Next-generation Biomedical Imaging

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Omni-tomography is enabled by interior tomography that has been developed over the past five years. By omni-tomography, we envision that the next stage of biomedical imaging will be the grand fusion of many tomographic modalities into a single gantry (all in one) for simultaneous data acquisition of numerous complementary features (all at once). This integration has great synergistic potential for development of systems biology, personalized and preventive medicine, because many physiological processes are dynamic and complicated, and must be observed promptly, comprehensively, sensitively, specifically, and non-invasively. In this perspective, we first present the background for and power of omni-tomography, then discuss its important applications in vulnerable plaque characterization and intratumor heterogeneity evaluation, review its enabling theory and technology, explain for the first time the feasibility of the CT-MRI scanner as an example, and finally suggest exciting research opportunities.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Decoding global gene expression programs in liver cancer by noninvasive imaging.

          Paralleling the diversity of genetic and protein activities, pathologic human tissues also exhibit diverse radiographic features. Here we show that dynamic imaging traits in non-invasive computed tomography (CT) systematically correlate with the global gene expression programs of primary human liver cancer. Combinations of twenty-eight imaging traits can reconstruct 78% of the global gene expression profiles, revealing cell proliferation, liver synthetic function, and patient prognosis. Thus, genomic activity of human liver cancers can be decoded by noninvasive imaging, thereby enabling noninvasive, serial and frequent molecular profiling for personalized medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging of atherosclerotic cardiovascular disease.

            Atherosclerosis is characterized by thickening of the walls of the arteries, a process that occurs slowly and 'silently' over decades. This prolonged course of disease provides a window of opportunity for diagnosis before symptoms occur. But, until recently, only advanced atherosclerotic disease could be observed. Now, developments in imaging technology offer many enticing prospects, including detecting atherosclerosis early, grouping individuals by the probability that they will develop symptoms of atherosclerosis, assessing the results of treatment and improving the current understanding of the biology of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multimodality imaging: beyond PET/CT and SPECT/CT.

              Multimodality imaging with positron emission tomography/computed tomography (PET/CT) and single-photon emission computed tomography (SPECT)/CT has become commonplace in clinical practice and in preclinical and basic biomedical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? Presently, the combination of PET or SPECT with magnetic resonance imaging (MRI) is an area of active research, while other, perhaps less obvious combinations, including CT/MRI and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend toward harnessing the complementary nature of the different modalities on integrated imaging platforms?
                Bookmark

                Author and article information

                Journal
                21 December 2012
                Article
                1212.5579
                d406a1f2-b39e-4f68-8947-c6fc8dd7521e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                3 pages, 1 figure, 33 references
                physics.med-ph physics.bio-ph q-bio.TO

                Comments

                Comment on this article