28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Indian origin of paternal haplogroup R1a1* substantiates the autochthonous origin of Brahmins and the caste system.

      Journal of human genetics
      Asia, Central, Chromosomes, Human, Y, genetics, Databases, Genetic, Ethnic Groups, Fathers, Gene Pool, Genetics, Population, Haplotypes, Humans, India, Male, Microsatellite Repeats, Phylogeny, Social Class, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many major rival models of the origin of the Hindu caste system co-exist despite extensive studies, each with associated genetic evidences. One of the major factors that has still kept the origin of the Indian caste system obscure is the unresolved question of the origin of Y-haplogroup R1a1*, at times associated with a male-mediated major genetic influx from Central Asia or Eurasia, which has contributed to the higher castes in India. Y-haplogroup R1a1* has a widespread distribution and high frequency across Eurasia, Central Asia and the Indian subcontinent, with scanty reports of its ancestral (R*, R1* and R1a*) and derived lineages (R1a1a, R1a1b and R1a1c). To resolve these issues, we screened 621 Y-chromosomes (of Brahmins occupying the upper-most caste position and schedule castes/tribals occupying the lower-most positions) with 55 Y-chromosomal binary markers and seven Y-microsatellite markers and compiled an extensive dataset of 2809 Y-chromosomes (681 Brahmins, and 2128 tribals and schedule castes) for conclusions. A peculiar observation of the highest frequency (up to 72.22%) of Y-haplogroup R1a1* in Brahmins hinted at its presence as a founder lineage for this caste group. Further, observation of R1a1* in different tribal population groups, existence of Y-haplogroup R1a* in ancestors and extended phylogenetic analyses of the pooled dataset of 530 Indians, 224 Pakistanis and 276 Central Asians and Eurasians bearing the R1a1* haplogroup supported the autochthonous origin of R1a1 lineage in India and a tribal link to Indian Brahmins. However, it is important to discover novel Y-chromosomal binary marker(s) for a higher resolution of R1a1* and confirm the present conclusions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history.

          Since the 1920s, population geneticists have had measures that describe how genetic variation is distributed spatially within a species' geographical range. Modern genetic survey techniques frequently yield information on the evolutionary relationships among the alleles or haplotypes as well as information on allele frequencies and their spatial distributions. This evolutionary information is often expressed in the form of an estimated haplotype or allele tree. Traditional statistics of population structure, such as F statistics, do not make use of evolutionary genealogical information, so it is necessary to develop new statistical estimators and tests that explicitly incorporate information from the haplotype tree. One such technique is to use the haplotype tree to define a nested series of branches (clades), thereby allowing an evolutionary nested analysis of the spatial distribution of genetic variation. Such a nested analysis can be performed regarding the geographical sampling locations either as categorical or continuous variables (i.e. some measure of spatial distance). It is shown that such nested phylogeographical analyses have more power to detect geographical associations than traditional, nonhistorical analyses and, as a consequence, allow a broader range of gene-flow parameters to be estimated in a precise fashion. More importantly, such nested analyses can discriminate between phylogeographical associations due to recurrent but restricted gene flow vs. historical events operating at the population level (e.g. past fragmentation, colonization, or range expansion events). Restricted gene flow and historical events can be intertwined, and the cladistic analyses can reconstruct their temporal juxtapositions, thereby yielding great insight into both the evolutionary history and population structure of the species. Examples are given that illustrate these properties, concentrating on the detection of range expansion events.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists.

              Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000-15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era--not Indo-European--expansions have shaped the distinctive South Asian Y-chromosome landscape.
                Bookmark

                Author and article information

                Comments

                Comment on this article