23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metal Hyperaccumulation Armors Plants against Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the ‘elemental defense’ hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola ( Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro dose–response curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former lead–zinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants.

          Author Summary

          Soils rich in heavy metals support communities of distinctive metal-tolerant plants, a number of which exhibit a remarkable trait known as metal hyperaccumulation. These plants accumulate exceptionally high concentrations of metallic elements in their leaves, but whether this trait confers any adaptive advantage is controversial. In this study, we test the hypothesis that metal hyperaccumulation provides protection against disease. We demonstrate that Thlaspi caerulescens becomes resistant to bacterial leaf spot caused by Pseudomonas syringae pv. maculicola ( Psm) when it accumulates zinc, nickel, or cadmium, and show that the metal concentrations in these plants are sufficient to account for their observed disease resistance. We also show that there is a close correlation between the zinc tolerance of different strains of Psm and their ability to colonize T. caerulescens leaves with high zinc content. In a field study, bacteria isolated from the leaves of T. caerulescens plants growing on the site of a former lead–zinc mine were found to possess a higher degree of metal tolerance than bacteria isolated from crop plants. Our findings show that metal hyperaccumulation in plants can act as a mechanism to prevent attack by pathogenic microorganisms, but that metal tolerant pathogens can overcome this defense.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans.

          pRK212.2, a derivative of the broad host range plasmid RK2, contains two EcoRI cleavage fragments, A and B, neither of which can replicate by itself in Escherichia coli. Fragment A (41.7 kilobases), but not fragment B (14.4 kilobases), can be cloned by insertion into the unrelated plasmids mini-F and ColE1. Fragment B contains the origin of replication and the ampicillin-resistance determinant of RK2. Transformation of E. coli cells containing the mini-F-fragment A hybrid plasmid with fragment B DNA results in the recircularization and replication of fragment B as a nonmobilizable plasmid (pRK2067) with the copy number and incompatibility properties of RK2. Fragment B cannot be cloned in the absence of fragment A because the latter fragment suppresses a function, specified by fragment B, that results in loss of host cell viability. A small segment (2.4 kilobases) of fragment B that contains the RK2 origin of replication but no longer affects host cell growth in the absence of fragment A had been cloned previously by insertion into a ColE1 plasmid. This hybrid plasmid, designated pRK256, will replicate in E. coli polA mutants only when a fragment A-bearing helper plasmid is present. These results demonstrate that the potentially lethal function specified by fragment B of RK2 is not necessary for replication and that at least one trans-acting function is directly involved in RK2 replication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A standard curve based method for relative real time PCR data processing

            Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I) Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II) The optimal threshold is selected automatically from regression parameters of the standard curve. (III) Crossing points (CPs) are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV) The means and their variances are calculated for CPs in PCR replicas. (V) The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that standard curve design remains a reliable and simple alternative to the PCR-efficiency based calculations in relative real time PCR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production.

              Exopolysaccharides contribute significantly to attachment and biofilm formation in the opportunisitc pathogen Pseudomonas aeruginosa. The Psl polysaccharide, which is synthesized by the polysaccharide synthesis locus (psl), is required for biofilm formation in non-mucoid strains that do not rely on alginate as the principal biofilm polysaccharide. In-frame deletion and complementation studies of individual psl genes revealed that 11 psl genes, pslACDEFGHIJKL, are required for Psl production and surface attachment. We also present the first structural analysis of the psl-dependent polysaccharide, which consists of a repeating pentasaccharide containing d-mannose, d-glucose and l-rhamnose: [See text]. In addition, we identified the sugar nucleotide precursors involved in Psl generation and demonstrated the requirement for GDP-d-mannose, UDP-d-glucose and dTDP-l-rhamnose in Psl production and surface attachment. Finally, genetic analyses revealed that wbpW restored Psl production in a pslB mutant and pslB promoted A-band LPS synthesis in a wbpW mutant, indicating functional redundancy and overlapping roles for these two enzymes. The structural and genetic data presented here provide a basis for further investigation of the Psl proteins and potential roles for Psl in the biology and pathogenesis of P. aeruginosa.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2010
                September 2010
                9 September 2010
                : 6
                : 9
                : e1001093
                Affiliations
                [1]Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
                The University of North Carolina at Chapel Hill, United States of America
                Author notes
                [¤]

                Current address: Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China

                Conceived and designed the experiments: HF JACS GMP. Performed the experiments: HF CARD AR FF GMP. Analyzed the data: HF CARD JACS GMP. Contributed reagents/materials/analysis tools: AR. Wrote the paper: HF JACS GMP.

                Article
                10-PLPA-RA-2732R3
                10.1371/journal.ppat.1001093
                2936542
                20838462
                d433acba-8eab-4651-87b5-820a3911e902
                Fones et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 February 2010
                : 10 August 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Ecology/Environmental Microbiology
                Ecology/Plant-Environment Interactions
                Microbiology/Environmental Microbiology
                Microbiology/Microbial Physiology and Metabolism
                Plant Biology/Plant-Biotic Interactions
                Plant Biology/Plant-Environment Interactions

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article