+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Once-daily transdermal rivastigmine in the treatment of Alzheimer’s disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          During the past decade, transdermal delivery systems (TDS) have become increasingly important for treating neurologic and psychiatric disorders. The rivastigmine patch was the first patch to be approved to treat Alzheimer’s disease (AD). The 9.5 mg/24 h patch has equal efficacy to the capsules and reduces gastrointestinal adverse events, such as nausea and vomiting, by two-thirds. This treatment is well tolerated by patients because drug delivery is even and continuous, reducing fluctuation in drug plasma level, and attenuating the development of centrally mediated cholinergic side effects. Furthermore, once-a-day application of the patch enables an easy treatment schedule, ease of handling, infrequent skin irritations, and a patient- and caregiver-friendly mode of administration. Improved compliance with a subsequent drug administration may contribute to better clinical efficacy, reduce caregiver burden, result in a slower rate of institutionalization, and lead to a decrease in healthcare and medical costs. Because of these advantages, the rivastigmine patch has enabled great progress in the treatment of AD, and represents an excellent alternative to the orally administered cholinesterase inhibitors.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.

          Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.
            • Record: found
            • Abstract: found
            • Article: not found

            A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease.

            Vaccinations with amyloid-beta peptide (A beta) can dramatically reduce amyloid deposition in a transgenic mouse model of Alzheimer's disease. To determine if the vaccinations had deleterious or beneficial functional consequences, we tested eight months of A beta vaccination in a different transgenic model for Alzheimer's disease in which mice develop learning deficits as amyloid accumulates. Here we show that vaccination with A beta protects transgenic mice from the learning and age-related memory deficits that normally occur in this mouse model for Alzheimer's disease. During testing for potential deleterious effects of the vaccine, all mice performed superbly on the radial-arm water-maze test of working memory. Later, at an age when untreated transgenic mice show memory deficits, the A beta-vaccinated transgenic mice showed cognitive performance superior to that of the control transgenic mice and, ultimately, performed as well as nontransgenic mice. The A beta-vaccinated mice also had a partial reduction in amyloid burden at the end of the study. This therapeutic approach may thus prevent and, possibly, treat Alzheimer's dementia.
              • Record: found
              • Abstract: found
              • Article: not found

              Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease.

              Previous studies have suggested that the use of nonsteroidal antiinflammatory drugs (NSAIDs) may help to prevent Alzheimer's disease. The results, however, are inconsistent. We studied the association between the use of NSAIDs and Alzheimer's disease and vascular dementia in a prospective, population-based cohort study of 6989 subjects 55 years of age or older who were free of dementia at base line, in 1991. To detect new cases of dementia, follow-up screening was performed in 1993 and 1994 and again in 1997 through 1999. The risk of Alzheimer's disease was estimated in relation to the use of NSAIDs as documented in pharmacy records. We defined four mutually exclusive categories of use: nonuse, short-term use (1 month or less of cumulative use), intermediate-term use (more than 1 but less than 24 months of cumulative use), and long-term use (24 months or more of cumulative use). Adjustments were made by Cox regression analysis for age, sex, education, smoking status, and the use or nonuse of salicylates, histamine Hz-receptor antagonists, antihypertensive agents, and hypoglycemic agents. During an average follow-up period of 6.8 years, dementia developed in 394 subjects, of whom 293 had Alzheimer's disease, 56 vascular dementia, and 45 other types of dementia. The relative risk of Alzheimer's disease was 0.95 (95 percent confidence interval, 0.70 to 1.29) in subjects with short-term use of NSAIDs, 0.83 (95 percent confidence interval, 0.62 to 1.11) in those with intermediate-term use, and 0.20 (95 percent confidence interval, 0.05 to 0.83) in those with long-term use. The risk did not vary according to age. The use of NSAIDs was not associated with a reduction in the risk of vascular dementia. The long-term use of NSAIDs may protect against Alzheimer's disease but not against vascular dementia.

                Author and article information

                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug design, development and therapy
                Dove Medical Press
                6 February 2009
                : 2
                : 245-254
                Department of Neurology, Philipps-University Marburg, Germany
                Author notes
                Correspondence: Richard Dodel, Dept of Neurology, Philipps-University, Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany, Tel +49 6421 586 5190, Fax +49 6421 286 5474, Email dodel@ 123456med.uni-marburg.de
                © 2008 Dove Medical Press Limited. All rights reserved

                Pharmacology & Pharmaceutical medicine

                dementia, patch, rivastigmine, alzheimer’s disease


                Comment on this article