4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene–deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells.

          A novel neuropeptide which stimulates adenylate cyclase in rat anterior pituitary cell cultures was isolated from ovine hypothalamic tissues. Its amino acid sequence was revealed as: His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala- Val-Lys-Lys-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys - NH2. The N-terminal sequence shows 68% homology with vasoactive intestinal polypeptide (VIP) but its adenylate cyclase stimulating activity was at least 1000 times greater than that of VIP. It increased release of growth hormone (GH), prolactin (PRL), corticotropin (ACTH) and luteinizing hormone (LH) from superfused rat pituitary cells at as small a dose as 10(-10)M (GH, PRL, ACTH) or 10(-9)M (LH). Whether these hypophysiotropic effects are the primary actions of the peptide or what physiological action in the pituitary is linked with the stimulation of adenylate cyclase by this peptide remains to be determined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescent cells and osteoarthritis: a painful connection

            Senescent cells (SnCs) are associated with age-related pathologies. Osteoarthritis is a chronic disease characterized by pain, loss of cartilage, and joint inflammation, and its incidence increases with age. For years, the presence of SnCs in cartilage isolated from patients undergoing total knee artificial implants has been noted, but these cells’ relevance to disease was unclear. In this Review, we summarize current knowledge of SnCs in the multiple tissues that constitute the articular joint. New evidence for the causative role of SnCs in the development of posttraumatic and age-related arthritis is reviewed along with the therapeutic benefit of SnC clearance. As part of their senescence-associated secretory phenotype, SnCs secrete cytokines that impact the immune system and its response to joint tissue trauma. We present concepts of the immune response to tissue trauma as well as the interactions with SnCs and the local tissue environment. Finally, we discuss therapeutic implications of targeting SnCs in treating osteoarthritis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis

              SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
                Bookmark

                Author and article information

                Contributors
                juhaszt@anat.med.unideb.hu
                Journal
                GeroScience
                Geroscience
                GeroScience
                Springer International Publishing (Cham )
                2509-2715
                2509-2723
                26 October 2019
                26 October 2019
                December 2019
                : 41
                : 6
                : 775-793
                Affiliations
                [1 ]GRID grid.7122.6, ISNI 0000 0001 1088 8582, Department of Anatomy, Histology and Embryology, Faculty of Medicine, , University of Debrecen, ; Nagyerdei krt. 98, Debrecen, 4032 Hungary
                [2 ]GRID grid.9679.1, ISNI 0000 0001 0663 9479, Department of Anatomy, PTE-MTA PACAP Research Team, , University of Pécs Medical School, ; Szigeti út 12, Pecs, 7624 Hungary
                [3 ]GRID grid.266902.9, ISNI 0000 0001 2179 3618, Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, , University of Oklahoma Health Sciences Center, ; Oklahoma City, OK USA
                Article
                97
                10.1007/s11357-019-00097-9
                6925077
                31655957
                d4396fb4-59a3-488c-b2a3-18b2e330af14
                © The Author(s) 2019

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 25 June 2019
                : 22 August 2019
                Funding
                Funded by: MTA-TKI
                Award ID: 14016
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © American Aging Association 2019

                aggrecan,collagen expression,sox9,sox5,sox6,hyaluronic acid
                aggrecan, collagen expression, sox9, sox5, sox6, hyaluronic acid

                Comments

                Comment on this article