24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/Smad signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          LIM and SH3 protein 1(LASP1) can promote colorectal cancer (CRC) progression and metastasis, but the mechanism remains unclear. Here, we show that LASP1 interacts with S100 calcium binding protein A11(S100A11) and enhances its expression in CRC. LASP1-S100A11 axis is essential for TGFβ-mediated epithelial-mesenchymal transition (EMT) and cell aggressive phenotype. Clinically, S100A11 is overexpressed in CRC tissues and localized in both the cytoplasm and the nucleus of CRC cells. Overexpression of S100A11 in cytoplasmic and nuclear subcellular compartments is associated with tumor metastasis and poor prognosis of CRC patients. Introduction of cytoplasmic and nuclear S100A11 promotes aggressive phenotypes of CRC cells in vitro as well as growth and metastasis of CRC xenografts, whereas suppressing S100A11 abrogates these effects. Furthermore, we identify flotillin-1 (FLOT1) and histone H1 as downstream factors for cytoplasmic and nuclear pathway of S100A11, which are required for LASP1-S100A11 axis-mediated EMT and CRC progression. These findings indicate S100A11, combined with LASP1, plays a critical role in promoting CRC metastasis via its subcellular effectors, FLOT1 and histone H1.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.

          The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of most carcinomas recapitulate the organization of their primary tumours. Although current models explain distinct and important aspects of carcinogenesis, each alone can not explain the sum of the cellular changes apparent in human cancer progression. We suggest an extended, integrated model that is consistent with all aspects of human tumour progression - the 'migrating cancer stem (MCS)-cell' concept.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation.

            Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular networks that regulate cancer metastasis.

              Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Although many patients can be cured, in the US and UK, cancer still causes 730,000 deaths every year, and it is second only to cardiovascular disease as a cause of death. The functional roles of many critical players involved in metastasis have been delineated in great detail in recent years, due to the draft of the human genome and to many associated discoveries. Here, we address several genetic events and critical factors that define the metastatic phenotype acquired during tumorigenesis. This involves molecular networks that promote local cancer-cell invasion, single-cell invasion, formation of the metastatic microenvironment of primary tumors, intravasation, lymphogenic metastasis, extravasation, and metastatic outgrowth. Altogether, these functional networks of molecules contribute to the development of a selective environment that promotes the seeding and malignant progression of tumorigenic cells in distant organs. We include here candidate target proteins and signaling pathways that are now under clinical investigation. Although many of these trials are still ongoing, they provide the basis for the development of new aspects in the treatment of metastatic cancers, which involves inhibition of these proteins and their molecular networks. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                16 May 2016
                2016
                : 6
                : 26112
                Affiliations
                [1 ]Department of Pathology, Nanfang Hospital, Southern Medical University , Guangzhou, China
                [2 ]Department of Pathology, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
                [3 ]Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University , Guangzhou, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep26112
                10.1038/srep26112
                4867635
                27181092
                d43dd7cc-7103-4ca9-8ea0-3e402e8d1e6f
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 January 2016
                : 26 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article