16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing KCC2 function counteracts morphine-induced hyperalgesia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Morphine-induced hyperalgesia (MIH) is a severe adverse effect accompanying repeated morphine treatment, causing a paradoxical decrease in nociceptive threshold. Previous reports associated MIH with a decreased expression of the Cl extruder KCC2 in the superficial dorsal horn (SDH) of the spinal cord, weakening spinal GABA A/glycine-mediated postsynaptic inhibition. Here, we tested whether the administration of small molecules enhancing KCC2, CLP257 and its pro-drug CLP290, may counteract MIH. MIH was typically expressed within 6–8 days of morphine treatment. Morphine-treated rats exhibited decreased withdrawal threshold to mechanical stimulation and increased vocalizing behavior to subcutaneous injections. Chloride extrusion was impaired in SDH neurons measured as a depolarizing shift in E GABA under Cl load. Delivering CLP257 to spinal cord slices obtained from morphine-treated rats was sufficient to restore Cl extrusion capacity in SDH neurons. In vivo co-treatment with morphine and oral CLP290 prevented membrane KCC2 downregulation in SDH neurons. Concurrently, co-treatment with CLP290 significantly mitigated MIH and acute administration of CLP257 in established MIH restored normal nociceptive behavior. Our data indicate that enhancing KCC2 activity is a viable therapeutic approach for counteracting MIH. Chloride extrusion enhancers may represent an effective co-adjuvant therapy to improve morphine analgesia by preventing and reversing MIH.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain.

          Modern pain-control theory predicts that a loss of inhibition (disinhibition) in the dorsal horn of the spinal cord is a crucial substrate for chronic pain syndromes. However, the nature of the mechanisms that underlie such disinhibition has remained controversial. Here we present evidence for a novel mechanism of disinhibition following peripheral nerve injury. It involves a trans-synaptic reduction in the expression of the potassium-chloride exporter KCC2, and the consequent disruption of anion homeostasis in neurons of lamina I of the superficial dorsal horn, one of the main spinal nociceptive output pathways. In our experiments, the resulting shift in the transmembrane anion gradient caused normally inhibitory anionic synaptic currents to be excitatory, substantially driving up the net excitability of lamina I neurons. Local blockade or knock-down of the spinal KCC2 exporter in intact rats markedly reduced the nociceptive threshold, confirming that the reported disruption of anion homeostasis in lamina I neurons was sufficient to cause neuropathic pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.

            Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superresolution imaging of chemical synapses in the brain.

              Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here, we present a superresolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yves.dekoninck@neuro.ulaval.ca
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 June 2017
                20 June 2017
                2017
                : 7
                : 3870
                Affiliations
                [1 ]ISNI 0000 0001 2336 6580, GRID grid.7605.4, Department of Veterinary Sciences, , University of Turin, ; Turin, Italy
                [2 ]ISNI 0000 0001 0621 4067, GRID grid.420732.0, , CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, ; Québec, Canada
                [3 ]ISNI 0000 0004 1936 8390, GRID grid.23856.3a, Department of Psychiatry and Neuroscience, , Université Laval, ; Québec, Canada
                Author information
                http://orcid.org/0000-0002-5514-0049
                http://orcid.org/0000-0002-5779-9330
                Article
                4209
                10.1038/s41598-017-04209-3
                5478677
                28634406
                d44056d1-16ea-4dc4-9eff-7816d8269d3b
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 February 2017
                : 10 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article