8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of current and future coastal upwelling conditions on the fertilization success of the red abalone (Haliotis rufescens)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acidification, deoxygenation, and warming are escalating changes in coastal waters throughout the world ocean, with potentially severe consequences for marine life and ocean-based economies. To examine the influence of these oceanographic changes on a key biological process, we measured the effects of current and expected future conditions in the California Current Large Marine Ecosystem on the fertilization success of the red abalone (Haliotis rufescens). Laboratory experiments were used to assess abalone fertilization success during simultaneous exposure to various levels of seawater pH (gradient from 7.95 to 7.2), dissolved oxygen (DO) (∼60 and 180 µm.kg SW) and temperature (9, 13, and 18 °C). Fertilization success declined continuously with decreasing pH but dropped precipitously below a threshold near pH 7.55 in cool (9 °C—upwelling) to average (13 °C) seawater temperatures. Variation in DO had a negligible effect on fertilization. In contrast, warmer waters (18 °C) often associated with El Niño Southern Oscillation conditions in central California acted antagonistically with decreasing pH, largely reducing the strong negative influence below the pH threshold. Experimental approaches that examine the interactive effects of multiple environmental drivers and also strive to characterize the functional response of organisms along gradients in environmental change are becoming increasingly important in advancing our understanding of the real-world consequences of changing ocean conditions.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

          Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ecology. Physiology and climate change.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.

              Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses. © 2010 Blackwell Publishing Ltd/CNRS.
                Bookmark

                Author and article information

                Journal
                ICES Journal of Marine Science
                Oxford University Press (OUP)
                1054-3139
                1095-9289
                May 2017
                May 01 2017
                March 30 2017
                May 2017
                May 01 2017
                March 30 2017
                : 74
                : 4
                : 1125-1134
                Affiliations
                [1 ]Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
                [2 ]Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
                [3 ]College of Engineering, University of Georgia, Athens, GA 30602, USA
                [4 ]Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
                Article
                10.1093/icesjms/fsx017
                d44262d8-7648-4598-aae0-e4fac0c03e86
                © 2017

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article