8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NUSAP1, which is a microtubule-associated protein involved in mitosis, plays essential roles in diverse biological processes, especially in cancer biology. In this study, NUSAP1 was found to be overexpressed in GBM tissues in a grade-dependent manner compared with normal brain tissues. NUSAP1 was also highly expressed in GBM patients, dead patients, and GBM cells. In addition, NUSAP1 was found to participate in cell proliferation, apoptosis, and DNA damage in GBM cells. Ataxia telangiectasia and Rad3-related protein (ATR) are a primary sensor of DNA damage, and ATR is also a promising target in cancer therapy. Here, we found that NUSAP1 positively regulated the expression of ATR. Mechanistically, NUSAP1 suppressed the ubiquitin-dependent proteolysis of ATR. The SAP (SAF-A/B, Acinus, and PIAS) domain is a common motif of many SUMO (small ubiquitin-like modifier) E3 ligases, and this domain is involved in substrate recognition and ligase activity. This study further demonstrated that the SAP domain of NUSAP1 promoted the sumoylation of ATR, and thereby antagonized the ubiquitination of ATR. These results suggest that NUSAP1 stabilizes ATR by sumoylation. Moreover, NUSAP1 potentiated chemotherapeutic resistance to temozolomide (TMZ) and doxorubicin (DOX) through its SAP domain. Overall, this study indicates that NUSAP1 is a promising therapeutic target in GBM.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

          The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in the molecular genetics of gliomas — implications for classification and therapy

            In 2016, a revised WHO classification of glioma was published, in which molecular data and traditional histological information are incorporated into integrated diagnoses. Herein, the authors highlight the developments in our understanding of the molecular genetics of gliomas that underlie this classification, and review the current landscape of molecular biomarkers used in the classification of disease subtypes. In addition, they discuss how these advances can promote the development of novel pathogenesis-based therapeutic approaches, paving the way to precision medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global identification of modular cullin-RING ligase substrates.

              Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                lvsq0518@hotmail.com
                hongjuan.cui@gmail.com
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                22 April 2020
                22 April 2020
                2020
                : 5
                Affiliations
                [1 ]GRID grid.263906.8, State Key Laboratory of Silkworm Genome Biology, , Southwest University, ; Chongqing, China
                [2 ]GRID grid.263906.8, Cancer Center, Medical Research Institute, , Southwest University, ; Chongqing, China
                [3 ]ISNI 0000 0004 1760 6682, GRID grid.410570.7, Department of Neurosurgery, Xinqiao Hospital, , Third Military Medical University, ; Chongqing, China
                Article
                137
                10.1038/s41392-020-0137-7
                7174393
                32317623
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: This research was supported by the National Key Research and Development Program of China (No. 2016YFC1302204 and 2017YFC1308601), the Natural Science Foundation of China (No. 81872071 and 81672502), the Fundamental Research Funds for the Central Universities (XDJK2018D003) and the Graduate Scientific Research Foundation of Chongqing (CYB18102).
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                cns cancer, rnai, predictive markers, prognostic markers

                Comments

                Comment on this article