12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced Macular Vascular Density in Myopic Eyes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Morphological changes of the vasculature system in patients with myopia have been observed by Doppler ultrasound and fundus fluorescein angiography (FFA); however, these studies have limitations. Doppler ultrasound provides low-resolution images which are mainly obtained from visualized large vessels, and FFA is an invasive examination. Optic coherence tomography (OCT) angiography is a noninvasive, high-resolution measurement for vascular density. The purpose of this study was to investigate the change of vascular density in myopic eyes using OCT angiography.

          Methods:

          This cross-sectional study includes a total of 91 eyes from 47 participants including control, moderate, and high myopia that were evaluated by OCT angiography. Patients with myopia were recruited from the Refractive Department, Shenzhen Aier Eye Hospital, from August 5, 2015 to April 1, 2016. Emmetropic eyes were from healthy volunteers. The vascular density at macula and optic disc regions, ganglion cell complex (GCC) thickness, and retinal nerve fiber layer (RNFL) thickness were measured. Their relationships with axial length (AL) and refractive error were analyzed. One-way analysis of variance (ANOVA), Pearson's correlation, and generalized estimating equation were used for statistical analysis.

          Results:

          Both superficial and deep macular vascular density were highest in control (25.64% ± 3.76% and 37.12% ± 3.66%, respectively), then in moderate myopia (21.15% ± 5.33% and 35.35% ± 5.50%, respectively), and lowest in high myopia group (19.64% ± 3.87% and 32.81% ± 6.29%, respectively) ( F = 13.74 and 4.57, respectively; both P < 0.001). Both superficial (β = −0.850 and 0.460, respectively) and deep (β = −0.766 and 0.396, respectively) macular vascular density were associated with AL and spherical equivalent (all P < 0.001). Superficial macular vascular density was associated with GCC thickness (β = 0.244, P = 0.040), independent of spherical equivalent. The vascular density in optic disc region had no difference among the three groups, and it was not associated with AL, spherical equivalent, or RNFL thickness.

          Conclusion:

          Our results suggested that with the increase of myopia, the vascular density decreased in macular region, but not in optic disc region.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

          Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study.

            To evaluate the causes of visual impairment and blindness in adult Chinese in an urban and rural region of Beijing, China. Population-based prevalence survey. From a rural region and an urban region of Greater Beijing, 4439 of 5324 > or=40-year-old invited subjects participated in the study (response rate, 83.4%). Using the World Health Organization (WHO) standard and the United States standard, blindness was defined as best-corrected visual acuity (BCVA) in the better-seeing eye of or =20/400, and of or =2/20, respectively. Determination of BCVA, pneumotonometry, frequency doubling perimetry, evaluation of photographs of the fundus and lens, and clinical examination. Causes of visual impairment and blindness. Visual acuity measurements were available for 8816 eyes of 4409 subjects (99.3%). Using the WHO standard and the U.S. standard, 49 (1.1%) subjects and 95 (2.2%) subjects, respectively, had low vision, and 13 (0.3%) subjects and 15 (0.3%) subjects, respectively, were blind by definition. Taking the whole study population, the most frequent cause of low vision/blindness was cataract (36.7%/38.5%), followed by degenerative myopia (32.7%/7.7%), glaucoma (14.3%/7.7%), corneal opacity (6.1%/15.4%), and other optic nerve damage (2.0%/7.7%). Age-related macular degeneration (AMD) (2.0%/7.7%) and diabetic retinopathy (0%/7.7%) were responsible for a minority of cases. In subjects 40 to 49 years old, the most frequent cause of low vision and blindness was degenerative myopia. In the 50- to 59-year age group, the most frequent cause was cataract, followed by degenerative myopia. In the 60- to 69-year-old subjects and the > or =70-year group, the most frequent cause of low vision and blindness was cataract, followed by degenerative myopia and glaucoma. The most frequent cause of low vision and blindness in adult Chinese is cataract, followed by degenerative myopia and glaucomatous optic neuropathy, with degenerative myopia dominating in younger groups and cataract dominating in elder groups. In contrast to studies in Western countries, AMD and diabetic retinopathy appear to play a minor role as a cause of visual impairment in elderly Chinese.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study.

              To explore how optic disc perfusion varies in patients with open-angle glaucoma (OAG) and how this correlates with glaucoma severity.
                Bookmark

                Author and article information

                Journal
                Chin Med J (Engl)
                Chin. Med. J
                CMJ
                Chinese Medical Journal
                Medknow Publications & Media Pvt Ltd (India )
                0366-6999
                20 February 2017
                : 130
                : 4
                : 445-451
                Affiliations
                [1 ]Aier School of Ophthalmology, Central South University, Changsha, Hunan 410015, China
                [2 ]Joint Shantou International Eye Center, Shantou, Guangdong 515000, China
                [3 ]Shenzhen Aier Eye Hospital, Shenzhen, Guangdong 518000, China
                [4 ]Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
                Author notes
                Address for correspondence: Prof. Shuang-Nong Li, Shenzhen Aier Eye Hospital, Shenzhen, Guangdong 518000, China E-Mail: lshuangnong@ 123456163.com
                Article
                CMJ-130-445
                10.4103/0366-6999.199844
                5324382
                28218219
                d44fe853-ccd0-4690-9ac2-bacd085e93f5
                Copyright: © 2017 Chinese Medical Journal

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 15 November 2016
                Categories
                Original Article

                myopia,optic coherence tomography angiography,vascular density

                Comments

                Comment on this article