16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate)

      , ,   ,
      Polymers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.

          Plastic resin pellets (small granules 0.1-0.5 centimeters in diameter) are widely distributed in the ocean all over the world. They are an industrial raw material for the plastic industry and are unintentionally released to the environment both during manufacturing and transport. They are sometimes ingested by seabirds and other marine organisms, and their adverse effects on organisms are a concern. In the present study, PCBs, DDE, and nonylphenols (NP) were detected in polypropylene (PP) resin pellets collected from four Japanese coasts. Concentrations of PCBs (4-117 ng/g), DDE (0.16-3.1 ng/g), and NP (0.13-16 microg/g) varied among the sampling sites. These concentrations were comparable to those for suspended particles and bottom sediments collected from the same area as the pellets. Field adsorption experiments using PP virgin pellets demonstrated significant and steady increase in PCBs and DDE concentrations throughout the six-day experiment, indicating that the source of PCBs and DDE is ambient seawater and that adsorption to pellet surfaces is the mechanism of enrichment. The major source of NP in the marine PP resin pellets was thought to be plastic additives and/or their degradation products. Comparison of PCBs and DDE concentrations in mari
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring the abundance of plastic debris in the marine environment.

            Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.

              Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).
                Bookmark

                Author and article information

                Journal
                POLYCK
                Polymers
                Polymers
                MDPI AG
                2073-4360
                March 2013
                December 28 2012
                : 5
                : 1
                : 1-18
                Article
                10.3390/polym5010001
                d456f1fd-7d68-47b3-83e5-8e312860b464
                © 2012

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article