8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      t 4 Workshop Report * : Quality Assurance of Metabolomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however – from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining – is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics.

          The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Innovation: Metabolomics: the apogee of the omics trilogy.

          Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            HMDB: a knowledgebase for the human metabolome

            The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolomics: a global biochemical approach to drug response and disease.

              Metabolomics is the study of metabolism at the global level. This rapidly developing new discipline has important potential implications for pharmacologic science. The concept that metabolic state is representative of the overall physiologic status of the organism lies at the heart of metabolomics. Metabolomic studies capture global biochemical events by assaying thousands of small molecules in cells, tissues, organs, or biological fluids-followed by the application of informatic techniques to define metabolomic signatures. Metabolomic studies can lead to enhanced understanding of disease mechanisms and to new diagnostic markers as well as enhanced understanding of mechanisms for drug or xenobiotic effect and increased ability to predict individual variation in drug response phenotypes (pharmacometabolomics). This review outlines the conceptual basis for metabolomics as well as analytical and informatic techniques used to study the metabolome and to define metabolomic signatures. It also highlights potential metabolomic applications to pharmacology and clinical pharmacology.
                Bookmark

                Author and article information

                Journal
                100953980
                21906
                ALTEX
                ALTEX
                ALTEX
                1868-596X
                28 July 2017
                2015
                31 August 2017
                : 32
                : 4
                : 319-326
                Affiliations
                [1 ]Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
                [2 ]US Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR, USA
                [3 ]US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Laurel, MD, USA
                [4 ]Metabolon, Inc., Durham, NC, USA
                [5 ]Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
                [6 ]Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
                [7 ]Bristol-Myers Squibb Pharmaceutical Co., Princeton, NJ, USA
                [8 ]CAAT-Europe, University of Konstanz, Germany
                Author notes
                Correspondence to: Thomas Hartung, MD PhD, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, W7032, Baltimore, MD 21205, USA, thartun1@ 123456jhu.edu
                Article
                NIHMS895385
                10.14573/altex.1509161
                5578451
                26536290
                d4577d19-6193-49b7-b509-d216e097ad74

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited.

                History
                Categories
                Article

                metabolomics,toxicometabolomics,quality assurance,human toxome

                Comments

                Comment on this article