16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low Molecular Weight Heparin Ablates Lung Cancer Cisplatin-Resistance by Inducing Proteasome-Mediated ABCG2 Protein Degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer side population (SP) cells, which are often referred to as cancer stem cells, are thought to be responsible for lung cancer chemotherapy resistance, and currently no drug can specifically target these cells. We hypothesize low-molecular-weight heparin (LMWH) may affect the biological properties of SP cells and could be used to clinically target these cells. To test this, SP cells were isolated from cisplatin (DDP)-resistant lung adenocarcinoma A549/DDP cells by flow cytometric sorting. Compared to non-SP cells, SP cells formed increased numbers of colonies in vitro, and had a 1000-fold increase in tumorigenicity in vivo. Proliferation and apoptosis assays demonstrated LMWH had no significant effect on lung SP cell proliferation or apoptosis. However, LMWH reduced lung SP cell colony formation ability and protein expression of the multidrug transporter, ABCG2, by FACS and western blot analyses without affecting its mRNA levels by RT-PCR. Consistently, immunohistochemistry stainings of ABCG2 in LMWH-treated tumor tissues were significantly reduced compared with those in controls. Further, we found proteasomal inhibitor MG132, but not lysosomal inhibitors leupeptin and pepstatin A, could restore ABCG2 protein levels in LMWH-treated SP cells. These suggest LMWH ablates lung SP cell chemoresistance by proteasome-mediated reduction of ABCG2 protein levels without affecting its mRNA levels. We also determined LMWH combined with cisplatin could overcome cisplatin-resistance and induced lung SP cells apoptosis both in vitro and in vivo. This study provides an experimental basis for using a combination of LMWH, which targets lung SP cells, with chemotherapy to improve lung cancer survival.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of selective inhibitors of cancer stem cells by high-throughput screening.

          Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.

            Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells.

              An emerging concept in the field of cancer biology is that a rare population of 'tumour stem cells' exists among the heterogeneous group of cells that constitute a tumour. This concept, best described with human leukaemia, indicates that stem cell function (whether normal or neoplastic) might be defined by a common set of critical genes. Here we show that the Polycomb group gene Bmi-1 has a key role in regulating the proliferative activity of normal stem and progenitor cells. Most importantly, we provide evidence that the proliferative potential of leukaemic stem and progenitor cells lacking Bmi-1 is compromised because they eventually undergo proliferation arrest and show signs of differentiation and apoptosis, leading to transplant failure of the leukaemia. Complementation studies showed that Bmi-1 completely rescues these proliferative defects. These studies therefore indicate that Bmi-1 has an essential role in regulating the proliferative activity of both normal and leukaemic stem cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                23 July 2012
                : 7
                : 7
                : e41035
                Affiliations
                [1 ]Department of Medical Oncology, No. 309 PLA Hospital, Beijing, PR China
                [2 ]Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, C. S. Mott Center for Human Health and Development, Detroit, Michigan, United States of America
                [3 ]Department of Pathology, No. 309 PLA Hospital, Beijing, PR China
                [4 ]Beijing Center for Physical and Chemical Analysis, Beijing, PR China
                University Magna Graecia, Italy
                Author notes

                Conceived and designed the experiments: QN WW Yong Li DMR. Performed the experiments: QN WW Yong Li Fenghua Wang Yue Li Fangying Wang JYS KZ. Analyzed the data: QN WW Yong Li. Contributed reagents/materials/analysis tools: QN WW Yong Li. Wrote the paper: QN WW.

                Article
                PONE-D-12-07213
                10.1371/journal.pone.0041035
                3402471
                22844424
                d45b6cb2-5f60-468e-a7ae-6438fa0f062c
                Niu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 March 2012
                : 17 June 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Developmental Biology
                Stem Cells
                Molecular Cell Biology
                Cellular Types
                Stem Cells
                Medicine
                Oncology
                Basic Cancer Research
                Tumor Physiology
                Cancer Treatment
                Chemotherapy and Drug Treatment
                Cancers and Neoplasms
                Lung and Intrathoracic Tumors
                Adenocarcinoma of the Lung
                Non-Small Cell Lung Cancer
                Small Cell Lung Cancer
                Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article