Blog
About

23
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers.

      Medicinal Research Reviews

      blood, Tumor Markers, Biological, Prognosis, diagnosis, classification, Neoplasms, Monitoring, Physiologic, genetics, MicroRNAs, Humans

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Specific and sensitive non-invasive biomarkers for the detection of human epithelial malignancies are urgently required to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are 19-24 nt noncoding RNAs that are frequently dysregulated in cancer and have shown great promise as tissue-based markers for cancer classification. Once thought to be unstable RNA molecules, miRNAs are now shown to be stably expressed in serum, plasma, urine, saliva, and other body fluids. Moreover, the unique expression patterns of these circulating miRNAs are correlated with certain human diseases, including various types of cancer. Therefore, tumor-derived miRNAs in serum or plasma are emerging as novel blood-based fingerprints for the detection of human cancers, especially at an early stage. This review presented newly uncovered cellular and molecular mechanisms of the sources and stability of circulating miRNAs, revealing their great potential as a class of highly specific and sensitive biomarkers for tumor classification and prognostication. Meanwhile, this review also addressed certain critical issues that hinder the wide application of this new approach. Some potential challenges for the transition of circulating miRNAs from a research setting to a clinical application were also highlighted, with a future perspective of the incorporation of circulating miRNAs in the field of clinical oncology, especially their great potential from diagnostic to prognostic and predictive applications. © 2010 Wiley Periodicals, Inc.

          Related collections

          Most cited references 116

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA expression profiles classify human cancers.

            Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA signatures in human cancers.

               Carlo Croce,  G Calin (2006)
              MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
                Bookmark

                Author and article information

                Journal
                22383180
                10.1002/med.20215

                Comments

                Comment on this article