24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma.

          Bone marrow stromal cells [BMSCs; also known as mesenchymal stem cells (MSCs)] effectively suppress inflammatory responses in acute graft-versus-host disease in humans and in a number of disease models in mice. Many of the studies concluded that BMSC-driven immunomodulation is mediated by the suppression of proinflammatory Th1 responses while rebalancing the Th1/Th2 ratio toward Th2. In this study, using a ragweed induced mouse asthma model, we studied if BMSCs could be beneficial in an allergic, Th2-dominant environment. When BMSCs were injected i.v. at the time of the antigen challenge, they protected the animals from the majority of asthma-specific pathological changes, including inhibition of eosinophil infiltration and excess mucus production in the lung, decreased levels of Th2 cytokines (IL-4, IL-5, and IL-13) in bronchial lavage, and lowered serum levels of Th2 immunoglobulins (IgG1 and IgE). To explore the mechanism of the effect we used BMSCs isolated from a variety of knockout mice, performed in vivo blocking of cytokines and studied the effect of asthmatic serum and bronchoalveolar lavage from ragweed challenged animals on the BMSCs in vitro. Our results suggest that IL-4 and/or IL-13 activate the STAT6 pathway in the BMSCs resulting in an increase of their TGF-beta production, which seems to mediate the beneficial effect, either alone, or together with regulatory T cells, some of which might be recruited by the BMSCs. These data suggest that, in addition to focusing on graft-versus-host disease and autoimmune diseases, allergic conditions--specifically therapy resistant asthma--might also be a likely target of the recently discovered cellular therapy approach using BMSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex.

            We aimed to study the effects of mesenchymal stem cells (MSCs) on alloreactivity and effects of T-cell activation on human peripheral blood lymphocytes (PBLs) in vitro. MSCs were expanded from the bone marrow of healthy subjects. MSCs isolated from second to third passage were positive for CD166, CD105, CD44, CD29, SH-3 and SH-4, but negative for CD34 and CD45. MSCs cultured in osteogenic, adipogenic or chondrogenic media differentiated, respectively, into osteocytes, adipocytes or chondrocytes. MSC added to PBL cultures had various effects, ranging from slight inhibition to stimulation of DNA synthesis. The stimulation index (SI = (PBL + MSC)/PBL) varied between 0.2 and 7.3. The SI was not affected by the MSC dose or by the addition of allogeneic or autologous MSCs to the lymphocytes. Suppression of proliferative activity was observed in all experiments after the addition of 10,000-40,000 MSCs to mixed lymphocyte cultures (MLCs). Lymphocyte proliferation was 10-90%, compared with a control MLC run in parallel without MSCs. In contrast, the addition of fewer MSCs (10-1000 cells) led to a less consistent suppression or a marked lymphocyte proliferation in several experiments, ranging from 40 to 190% of the maximal lymphocyte proliferation in control MLCs. The ability to inhibit or stimulate T-cell alloresponses appeared to be independent of the major histocompatibility complex, as results were similar using 'third party' MSCs or MSCs that were autologous to the responder or stimulating PBLs. The strongest inhibitory effect was seen if MSCs were added at the beginning of the 6 day culture, and the effect declined if MSCs were added on day 3 or 5. Marked inhibitory effects of allogeneic and autologous MSCs (15,000) were also noted after mitogenic lymphocyte stimulation by phytohaemagglutinin (median lymphocyte proliferation of 30% of controls), Concanavalin A (56%) and protein A (65%). Little, if any, inhibition occurred after stimulation with pokeweed mitogen. Low numbers of MSCs (150 cells) were unable to inhibit mitogen-induced T-cell responses. MSCs have significant immune modulatory effects on MLCs and after mitogenic stimulation of PBL. High numbers of MSCs suppress alloreactive T cells, whereas very low numbers clearly stimulated lymphocyte proliferation in some experiments. The effect of a larger number of MSCs on MLCs seems more dependent on cell dose than histocompatibility and could result from an 'overload' of a stimulatory mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis

              Background Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. Principal Findings In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. Significance Our data indicate that MSCs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                19 May 2016
                2016
                : 6
                : 26227
                Affiliations
                [1 ]Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged , Szeged, Hungary
                [2 ]Center for Clinical Genomics and Personalized Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen , Debrecen, Hungary
                [3 ]Department of Medical Biochemistry, Oslo University Hospital and University of Oslo , Oslo, Norway
                [4 ]Department of Medical Chemistry, University of Debrecen , Debrecen, Hungary
                [5 ]Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo , Oslo, Norway
                Author notes
                Article
                srep26227
                10.1038/srep26227
                4872602
                27195722
                d460c01e-ff77-44e5-9a27-01a4b48036f5
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 November 2015
                : 25 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article