34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Draft Genome Sequence of Triclosan-Degrading Bacterium Sphingomonas sp. Strain YL-JM2C, Isolated from a Wastewater Treatment Plant in China

      brief-report
      , , ,
      Genome Announcements
      American Society for Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sphingomonas sp. strain YL-JM2C was isolated from a wastewater treatment plant in Xiamen, China, by enrichment on triclosan. The bacterium is of special interest because of its ability to degrade triclosan. Here, we present a draft genome sequence of the microorganism and its functional annotation. To our best knowledge, this is the first report of a draft genome sequence of a triclosan-degrading bacterium

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Triclosan: a critical review of the experimental data and development of margins of safety for consumer products.

          Triclosan (2,4,4'-trichloro-2'-hydroxy-diphenyl ether) is an antibacterial compound that has been used in consumer products for about 40 years. The tolerability and safety of triclosan has been evaluated in human volunteers with little indication of toxicity or sensitization. Although information in humans from chronic usage of personal care products is not available, triclosan has been extensively studied in laboratory animals. When evaluated in chronic oncogenicity studies in mice, rats, and hamsters, treatment-related tumors were found only in the liver of male and female mice. Application of the Human Relevance Framework suggested that these tumors arose by way of peroxisome proliferator-activated receptor alpha (PPARalpha) activation, a mode of action not considered to be relevant to humans. Consequently, a Benchmark Dose (BMDL(10)) of 47 mg/kg/day was developed based on kidney toxicity in the hamster. Estimates of the amount of intake from in the use of representative personal care products for men, women, and children were derived in two ways: (1) using known or assumed triclosan levels in various consumer products and assumed usage patterns (product-based estimates); and (2) using upper bound measured urinary triclosan levels from human volunteers (biomonitoring-based estimates) using data from the Centers for Disease Control and Prevention. For the product-based estimates, the margin of safety (MOS) for the combined exposure estimates of intake from the use of all triclosan-containing products considered were approximately 1000, 730, and 630 for men, women, and children, respectively. The MOS calculated from the biomonitoring-based estimated intakes were 5200, 6700, and 11,750 for men, women, and children, respectively. Based on these results, exposure to triclosan in consumer products is not expected to cause adverse health effects in children or adults who use these products as intended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.

            Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The in vitro estrogenic activities of triclosan and triclocarban.

              Triclosan (TCS) and triclocarban (TCC), as broad spectrum antibacterial agents, are distributed widely in the environment and humans. Most studies have focused on their distribution and biodegradation, but the endocrine-disrupting effects of these chemicals, especially their estrogenic effects, are still unclear. In the present study, we investigated the estrogenic effects of TCS and TCC using a series of in vitro assays, including the ER reporter gene assay in the CV-1 cells, E-screen assay and evaluation of estrogen-responsive genes in the MCF-7 cells. The tested concentrations of TCS and TCC were both from 1 × 10(-9) to 1 × 10(-6)  M. Results showed that TCS and TCC exerted estrogenic activities by inducing luciferase activities in an ER reporter gene assay, promoting the proliferation of the MCF-7 cells, up-regulating the expression of pS2 and down-regulating ERα expression at both the mRNA and protein levels in the MCF-7 cells. We further found that TCS and TCC could alter the expression of multiple microRNAs (mir-22, mir-206 and mir-193b) in the MCF-7 cells, which would help understand the mechanisms of their estrogenic effects on regulating the expression of ERα. In brief, our results demonstrated the potential estrogenic effects and profiled in vitro data for further risk assessment of TCS and TCC.
                Bookmark

                Author and article information

                Journal
                Genome Announc
                Genome Announc
                ga
                ga
                GA
                Genome Announcements
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2169-8287
                4 June 2015
                May-Jun 2015
                : 3
                : 3
                : e00603-15
                Affiliations
                Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
                Author notes
                Address correspondence to Chang-Ping Yu, cpyu@ 123456iue.ac.cn .

                S.I.M. and A.H. contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-6226-2741
                Article
                genomeA00603-15
                10.1128/genomeA.00603-15
                4457074
                26044437
                d4677cce-791e-49f8-8a3e-4335ff9f15cc
                Copyright © 2015 Mulla et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 5 May 2015
                : 6 May 2015
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 13, Pages: 2, Words: 1232
                Categories
                Prokaryotes
                Custom metadata
                May/June 2015
                free

                Genetics
                Genetics

                Comments

                Comment on this article