63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KINARI-Web: a server for protein rigidity analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KINARI-Web is an interactive web server for performing rigidity analysis and visually exploring rigidity properties of proteins. It also provides tools for pre-processing the input data, such as selecting relevant chains from PDB files, adding hydrogen atoms and identifying stabilizing interactions. KINARI-Web offers a quick-start option for beginners, and highly customizable features for the experienced user. Chains, residues or atoms, as well as stabilizing constraints can be selected, removed or added, and the user can designate how different chemical interactions should be modeled during rigidity analysis. The enhanced Jmol-based visualizer allows for zooming in, highlighting or investigating different calculated rigidity properties of a molecular structure. KINARI-Web is freely available at http://kinari.cs.umass.edu.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Satisfying hydrogen bonding potential in proteins.

          We have analysed the frequency with which potential hydrogen bond donors and acceptors are satisfied in protein molecules. There are a small percentage of nitrogen or oxygen atoms that do not form hydrogen bonds with either solvent or protein atoms, when standard criteria are used. For high resolution structures 9.5% and 5.1% of buried main-chain nitrogen and oxygen atoms, respectively, fail to hydrogen bond under our standard criteria, representing 5.8% and 2.1% of all main-chain nitrogen and oxygen atoms. We find that as the resolution of the data improves, the percentages fall. If the hydrogen bond criteria are relaxed many of these unsatisfied atoms form weak hydrogen bonds. However, there remain some buried atoms (1.3% NH and 1.8% CO) that fail to hydrogen bond without any immediately obvious compensating interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein flexibility predictions using graph theory.

            Techniques from graph theory are applied to analyze the bond networks in proteins and identify the flexible and rigid regions. The bond network consists of distance constraints defined by the covalent and hydrogen bonds and salt bridges in the protein, identified by geometric and energetic criteria. We use an algorithm that counts the degrees of freedom within this constraint network and that identifies all the rigid and flexible substructures in the protein, including overconstrained regions (with more crosslinking bonds than are needed to rigidify the region) and underconstrained or flexible regions, in which dihedral bond rotations can occur. The number of extra constraints or remaining degrees of bond-rotational freedom within a substructure quantifies its relative rigidity/flexibility and provides a flexibility index for each bond in the structure. This novel computational procedure, first used in the analysis of glassy materials, is approximately a million times faster than molecular dynamics simulations and captures the essential conformational flexibility of the protein main and side-chains from analysis of a single, static three-dimensional structure. This approach is demonstrated by comparison with experimental measures of flexibility for three proteins in which hinge and loop motion are essential for biological function: HIV protease, adenylate kinase, and dihydrofolate reductase. Copyright 2001 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein unfolding: rigidity lost.

              We relate the unfolding of a protein to its loss of structural stability or rigidity. Rigidity and flexibility are well defined concepts in mathematics and physics, with a body of theorems and algorithms that have been applied successfully to materials, allowing the constraints in a network to be related to its deformability. Here we simulate the weakening or dilution of the noncovalent bonds during protein unfolding, and identify the emergence of flexible regions as unfolding proceeds. The transition state is determined from the inflection point in the change in the number of independent bond-rotational degrees of freedom (floppy modes) of the protein as its mean atomic coordination decreases. The first derivative of the fraction of floppy modes as a function of mean coordination is similar to the fraction-folded curve for a protein as a function of denaturant concentration or temperature. The second derivative, a specific heat-like quantity, shows a peak around a mean coordination of = 2.41 for the 26 diverse proteins we have studied. As the protein denatures, it loses rigidity at the transition state, proceeds to a state where just the initial folding core remains stable, then becomes entirely denatured or flexible. This universal behavior for proteins of diverse architecture, including monomers and oligomers, is analogous to the rigid to floppy phase transition in network glasses. This approach provides a unifying view of the phase transitions of proteins and glasses, and identifies the mean coordination as the relevant structural variable, or reaction coordinate, along the unfolding pathway.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                1 July 2011
                1 July 2011
                21 June 2011
                21 June 2011
                : 39
                : Web Server issue , Web Server issue
                : W177-W183
                Affiliations
                1Department of Computer Science, 140 Governors Drive, University of Massachusetts, Amherst, MA 01003, and 2Department of Computer Science, Ford Hall, Smith College, Northampton, MA 01063, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +01 413 585 3827; Fax: +01 413 585 4534; Email: streinu@ 123456cs.smith.edu ; streinu@ 123456cs.umass.edu
                Article
                gkr482
                10.1093/nar/gkr482
                3125808
                21693559
                d46fb62b-cd30-451d-8fdf-2268e6d63023
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2011
                : 16 May 2011
                : 25 May 2011
                Page count
                Pages: 7
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article