4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative transcriptomics of spotted seatrout ( Cynoscion nebulosus) populations to cold and heat stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resilience to climate change depends on a species' adaptive potential and phenotypic plasticity. The latter can enhance survival of individual organisms during short periods of extreme environmental perturbations, allowing genetic adaptation to take place over generations. Along the U.S. East Coast, estuarine‐dependent spotted seatrout ( Cynoscion nebulosus) populations span a steep temperature gradient that provides an ideal opportunity to explore the molecular basis of phenotypic plasticity. Genetically distinct spotted seatrout sampled from a northern and a southern population were exposed to acute cold and heat stress (5 biological replicates in each treatment and control group), and their transcriptomic responses were compared using RNA‐sequencing (RNA‐seq). The southern population showed a larger transcriptomic response to acute cold stress, whereas the northern population showed a larger transcriptomic response to acute heat stress compared with their respective population controls. Shared transcripts showing significant differences in expression levels were predominantly enriched in pathways that included metabolism, transcriptional regulation, and immune response. In response to heat stress, only the northern population significantly upregulated genes in the apoptosis pathway, which could suggest greater vulnerability to future heat waves in this population as compared to the southern population. Genes showing population‐specific patterns of expression, including hpt, acot, hspa5, and hsc71, are candidates for future studies aiming to monitor intraspecific differences in temperature stress responses in spotted seatrout. Our findings contribute to the current understanding of phenotypic plasticity and provide a basis for predicting the response of a eurythermal fish species to future extreme temperatures.

          Abstract

          Spotted seatrout, Cynoscion nebulosus, is a popular saltwater sport fish in the United States, and distinct populations exist along the US east coast. We de novo assembled the first high‐quality liver transcriptome of the species and discovered both shared and unique transcriptomic responses after cold and heat stress in fish with distinct genetic background.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

            In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              limma powers differential expression analyses for RNA-sequencing and microarray studies

              limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
                Bookmark

                Author and article information

                Contributors
                mcdowell@vims.edu
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                28 December 2020
                February 2021
                : 11
                : 3 ( doiID: 10.1002/ece3.v11.3 )
                : 1352-1367
                Affiliations
                [ 1 ] Virginia Institute of Marine Science (VIMS) College of William and Mary Gloucester Point VA USA
                Author notes
                [*] [* ] Correspondence

                Jan R. McDowell, Virginia Institute of Marine Science (VIMS), College of William and Mary, Gloucester Point, VA, USA.

                Email: mcdowell@ 123456vims.edu

                Author information
                https://orcid.org/0000-0003-3151-543X
                https://orcid.org/0000-0002-4849-0649
                Article
                ECE37138
                10.1002/ece3.7138
                7863673
                33598136
                d489d871-692d-4127-9b41-f7fd62f2cb03
                © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 September 2020
                : 20 November 2020
                : 23 November 2020
                Page count
                Figures: 4, Tables: 3, Pages: 16, Words: 12482
                Funding
                Funded by: National Oceanic and Atmospheric Administration , open-funder-registry 10.13039/100000192;
                Award ID: NA140AR4170093
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                February 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.7 mode:remove_FC converted:05.02.2021

                Evolutionary Biology
                climate change,cynoscion nebulosus,phenotypic plasticity,rna‐seq,temperature stress,transcriptome

                Comments

                Comment on this article