23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr 286 and Thr 305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.

          The E6-AP ubiquitin ligase (human/mouse gene UBE3A/Ube3a) promotes the degradation of p53 in association with papilloma E6 protein, and maternal deficiency causes human Angelman syndrome (AS). Ube3a is imprinted with silencing of the paternal allele in hippocampus and cerebellum in mice. We found that the phenotype of mice with maternal deficiency (m-/p+) for Ube3a resembles human AS with motor dysfunction, inducible seizures, and a context-dependent learning deficit. Long-term potentiation (LTP) was severely impaired in m-/p+ mice despite normal baseline synaptic transmission and neuroanatomy, indicating that ubiquitination may play a role in mammalian LTP and that LTP may be abnormal in AS. The cytoplasmic abundance of p53 was increased in postmitotic neurons in m-/p+ mice and in AS, providing a potential biochemical basis for the phenotype through failure to ubiquitinate and degrade various effectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc.

            Angelman Syndrome is a debilitating neurological disorder caused by mutation of the E3 ubiquitin ligase Ube3A, a gene whose mutation has also recently been associated with autism spectrum disorders (ASDs). The function of Ube3A during nervous system development and how Ube3A mutations give rise to cognitive impairment in individuals with Angleman Syndrome and ASDs are not clear. We report here that experience-driven neuronal activity induces Ube3A transcription and that Ube3A then regulates excitatory synapse development by controlling the degradation of Arc, a synaptic protein that promotes the internalization of the AMPA subtype of glutamate receptors. We find that disruption of Ube3A function in neurons leads to an increase in Arc expression and a concomitant decrease in the number of AMPA receptors at excitatory synapses. We propose that this deregulation of AMPA receptor expression at synapses may contribute to the cognitive dysfunction that occurs in Angelman Syndrome and possibly other ASDs. (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning.

              Two apolipoprotein E (apoE) receptors, the very low density lipoprotein (VLDL) receptor and apoE receptor 2 (apoER2), are also receptors for Reelin, a signaling protein that regulates neuronal migration during brain development. In the adult brain, Reelin is expressed by GABA-ergic interneurons, suggesting a potential function as a modulator of neurotransmission. ApoE receptors have been indirectly implicated in memory and neurodegenerative disorders because their ligand, apoE, is genetically associated with Alzheimer disease. We have used knockout mice to investigate the role of Reelin and its receptors in cognition and synaptic plasticity. Mice lacking either the VLDL receptor or the apoER2 show contextual fear conditioning deficits. VLDL receptor-deficient mice also have a moderate defect in long term potentiation (LTP), and apoER2 knockouts have a pronounced one. The perfusion of mouse hippocampal slices with Reelin has no effect on baseline synaptic transmission but significantly enhances LTP in area CA1. This Reelin-dependent augmentation of LTP is abolished in VLDL receptor and apoER2 knockout mice. Our results reveal a role for Reelin in controlling synaptic plasticity in the adult brain and suggest that both of its receptors are necessary for Reelin-dependent enhancement of synaptic transmission in the hippocampus. Thus, the impairment of apoE receptor-dependent neuromodulation may contribute to cognitive impairment and synaptic loss in Alzheimer disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                9 December 2011
                : 6
                : 12
                : e27221
                Affiliations
                [1 ]Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
                [2 ]Department of Pharmacy, University of South Florida, Tampa, Florida, United States of America
                [3 ]Department of Neuroscience, Princeton University, Princeton, New Jersey, United States of America
                [4 ]University of South Florida Health Byrd Alzheimer's Institute, Tampa, Florida, United States of America
                [5 ]McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
                [6 ]Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida, United States of America
                [7 ]Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
                National Institutes of Health/NICHD, United States of America
                Author notes

                Conceived and designed the experiments: JLD EJW KN RDB JLB. Performed the experiments: JLD KN MMP JR. Analyzed the data: JLD JR. Contributed reagents/materials/analysis tools: JLD KN UJ TG CD. Wrote the paper: JLD EJW KN.

                Article
                PONE-D-11-13402
                10.1371/journal.pone.0027221
                3235088
                22174738
                d4969845-2f18-47d7-8ed3-243fc1e6e757
                Daily et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 July 2011
                : 12 October 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Developmental Biology
                Genomic Imprinting
                Genetics
                Genetics of Disease
                Neuroscience
                Cognitive Neuroscience
                Cognition
                Animal Cognition
                Behavioral Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article