10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gene therapy can be an intriguing therapeutic option in wide-ranging neurological disorders. Though nonviral gene carriers represent a safer delivery system to their viral counterparts, a thorough design of such vehicles is crucial to enhance their transfection properties.

          Purpose

          This study evaluated the effects of combined use of two nonionic surfactants, poloxamer 188 (P) and polysorbate 80 (P80) into nanovesicles – based on 2,3-di(tetradecyloxy)propan-1-amine cationic lipid (D) – destined for gene delivery to central nervous system cells.

          Methods

          Niosome formulations without and with poloxamer 188 (DP80 and DPP80, respectively) were prepared by the reverse-phase evaporation technique and characterized in terms of size, surface charge, and morphology. After the addition of pCMS-EGFP plasmid, the binding efficiency to the niosomes was evaluated in agarose gel electrophoresis assays. Additionally, transfection efficiency of complexes was also evaluated in in vitro and in vivo conditions.

          Results

          In vitro experiments on NT2 cells revealed that the complexes based on a surfactant combination (DPP80) enhanced cellular uptake and viability when compared with the DP80 counterparts. Interestingly, DPP80 complexes showed protein expression in glial cells after administration into the cerebral cortices of rats.

          Conclusion

          These data provide new insights for glia-centered approach for gene therapy of nervous system disorders using cationic nanovesicles, where nonionic surfactants play a pivotal role.

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.

          The interactions of nanoparticles with the soft surfaces of biological systems like cells play key roles in executing their biomedical functions and in toxicity. The discovery or design of new biomedical functions, or the prediction of the toxicological consequences of nanoparticles in vivo, first require knowledge of the interplay processes of the nanoparticles with the target cells. This article focusses on the cellular uptake, location and translocation, and any biological consequences, such as cytotoxicity, of the most widely studied and used nanoparticles, such as carbon-based nanoparticles, metallic nanoparticles, and quantum dots. The relevance of the size and shape, composition, charge, and surface chemistry of the nanoparticles in cells is considered. The intracellular uptake pathways of the nanoparticles and the cellular responses, with potential signaling pathways activated by nanoparticle interactions, are also discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial.

            Dopaminergic neuronal loss in Parkinson's disease leads to changes in the circuitry of the basal ganglia, such as decreased inhibitory GABAergic input to the subthalamic nucleus. We aimed to measure the safety, tolerability, and potential efficacy of transfer of glutamic acid decarboxylase (GAD) gene with adeno-associated virus (AAV) into the subthalamic nucleus of patients with Parkinson's disease. We did an open label, safety and tolerability trial of unilateral subthalamic viral vector (AAV-GAD) injection in 11 men and 1 woman with Parkinson's disease (mean age 58.2, SD=5.7 years). Four patients received low-dose, four medium-dose, and four high-dose AAV-GAD at New York Presbyterian Hospital. Inclusion criteria consisted of Hoehn and Yahr stage 3 or greater, motor fluctuations with substantial off time, and age 70 years or less. Patients were assessed clinically both off and on medication at baseline and after 1, 3, 6, and 12 months at North Shore Hospital. Efficacy measures included the Unified Parkinson's Disease Rating Scale (UPDRS), scales of activities of daily living (ADL), neuropsychological testing, and PET imaging with 18F-fluorodeoxyglucose. The trial is registered with the ClinicalTrials.gov registry, number NCT00195143. All patients who enrolled had surgery, and there were no dropouts or patients lost to follow-up. There were no adverse events related to gene therapy. Significant improvements in motor UPDRS scores (p=0.0015), predominantly on the side of the body that was contralateral to surgery, were seen 3 months after gene therapy and persisted up to 12 months. PET scans revealed a substantial reduction in thalamic metabolism that was restricted to the treated hemisphere, and a correlation between clinical motor scores and brain metabolism in the supplementary motor area. AAV-GAD gene therapy of the subthalamic nucleus is safe and well tolerated by patients with advanced Parkinson's disease, suggesting that in-vivo gene therapy in the adult brain might be safe for various neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.

              Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                16 November 2018
                : 12
                : 3937-3949
                Affiliations
                [1 ]NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, joseluis.pedraz@ 123456ehu.eus ; gustavo.puras@ 123456ehu.eus
                [2 ]Medical Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
                [3 ]Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda
                [4 ]Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, joseluis.pedraz@ 123456ehu.eus ; gustavo.puras@ 123456ehu.eus
                [5 ]Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
                [6 ]Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
                Author notes
                Correspondence: Jose Luis Pedraz; Gustavo Puras, Laboratory of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain, Tel +34 945 01 3091, Fax +34 945 01 3040, Email joseluis.pedraz@ 123456ehu.eus ; gustavo.puras@ 123456ehu.eus
                [*]

                These authors contributed equally to this work

                Article
                dddt-12-3937
                10.2147/DDDT.S178532
                6248232
                d49c220e-e299-414d-81c2-367cfe1b46e1
                © 2018 Attia et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                gene therapy,nonviral gene vectors,poloxamer 188,niosomes,cationic lipids

                Comments

                Comment on this article