203
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various conventional chemotherapeutic drugs can block angiogenesis or even kill activated, dividing endothelial cells. Such effects may contribute to the antitumor efficacy of chemotherapy in vivo and may delay or prevent the acquisition of drug-resistance by cancer cells. We have implemented a treatment regimen that augments the potential antivascular effects of chemotherapy, that is devoid of obvious toxic side effects, and that obstructs the development of drug resistance by tumor cells. Xenografts of 2 independent neuroblastoma cell lines were subjected to either continuous treatment with low doses of vinblastine, a monoclonal neutralizing antibody (DC101) targeting the flk-1/KDR (type 2) receptor for VEGF, or both agents together. The rationale for this combination was that any antivascular effects of the low-dose chemotherapy would be selectively enhanced in cells of newly formed vessels when survival signals mediated by VEGF are blocked. Both DC101 and low-dose vinblastine treatment individually resulted in significant but transient xenograft regression, diminished tumor vascularity, and direct inhibition of angiogenesis. Remarkably, the combination therapy resulted in full and sustained regressions of large established tumors, without an ensuing increase in host toxicity or any signs of acquired drug resistance during the course of treatment, which lasted for >6 months. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.

          Vascular endothelial growth factor (VEGF) has been shown to promote neovascularization in animal models and, more recently, in human subjects. This feature has been assumed to result exclusively from its direct effects on fully differentiated endothelial cells, i.e. angiogenesis. Given its regulatory role in both angiogenesis and vasculogenesis during fetal development, we investigated the hypothesis that VEGF may modulate endothelial progenitor cell (EPC) kinetics for postnatal neovascularization. Indeed, we observed an increase in circulating EPCs following VEGF administration in vivo. VEGF-induced mobilization of bone marrow-derived EPCs resulted in increased differentiated EPCs in vitro and augmented corneal neovascularization in vivo. These findings thus establish a novel role for VEGF in postnatal neovascularization which complements its known impact on angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.

            Retinopathy of prematurity (ROP) is initiated by hyperoxia-induced obliteration of newly formed blood vessels in the retina of the premature newborn. We propose that vessel regression is a consequence of hyperoxia-induced withdrawal of a critical vascular survival factor. We show that regression of retinal capillaries in neonatal rats exposed to high oxygen, is preceded by a shut-off of vascular endothelial growth factor (VEGF) production by nearby neuroglial cells. Vessel regression occurs via selective apoptosis of endothelial cells. Intraocular injection of VEGF at the onset of experimental hyperoxia prevents apoptotic death of endothelial cells and rescues the retinal vasculature. These findings provide evidence for a specific angiogenic factor acting as a vascular survival factor in vivo. The system also provides a paradigm for vascular remodelling as an adaptive response to an increase in oxygen tension and suggests a novel approach to prevention of ROP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.

              Acquired drug resistance is a major problem in the treatment of cancer. Of the more than 500,000 annual deaths from cancer in the United States, many follow the development of resistance to chemotherapy. The emergence of resistance depends in part on the genetic instability, heterogeneity and high mutational rate of tumour cells. In contrast, endothelial cells are genetically stable, homogeneous and have a low mutational rate. Therefore, antiangiogenic therapy directed against a tumour's endothelial cells should, in principle, induce little or no drug resistance. Endostatin, a potent angiogenesis inhibitor, was administered to mice bearing Lewis lung carcinoma, T241 fibrosarcoma or B16F10 melanoma. Treatment was stopped when tumours had regressed. Tumours were then allowed to re-grow and endostatin therapy was resumed. After 6, 4 or 2 treatment cycles, respectively, no tumours recurred after discontinuation of therapy. These experiments show that drug resistance does not develop in three tumour types treated with a potent angiogenesis inhibitor. An unexpected finding is that repeated cycles of antiangiogenic therapy are followed by prolonged tumour dormancy without further therapy.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                April 15 2000
                April 15 2000
                : 105
                : 8
                : R15-R24
                Article
                10.1172/JCI8829
                517491
                10772661
                d49dc892-bfc2-4a43-9233-996361da5fd2
                © 2000
                History

                Comments

                Comment on this article