57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of a Golgi Flippase by Phosphoinositides and an ArfGEF

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The essential role for phosphatidylinositol 4-phosphate (PtdIns[4]P) in vesicle-mediated protein transport from the trans-Golgi network (TGN) was first described in budding yeast 13. However, the identity of downstream effectors of PtdIns[4]P in this system has been elusive. Here, we show that Drs2p, a type IV P-type ATPase required for phospholipid translocase (flippase) activity and transport vesicle budding from the TGN 48, is an effector of PtdIns[4]P. Drs2p-dependent flip of a fluorescent phosphatidylserine analogue across purified TGN membranes requires synthesis of PtdIns[4]P by the PtdIns 4-kinase Pik1p. PtdIns[4]P binds to a regulatory domain in the C-terminal tail of Drs2p that has homology to a split PH domain and is required for Drs2p activity. In addition, basic residues required for phosphoinositide binding overlap a binding site for the ArfGEF Gea2p that was previously mapped 9. ArfGEF binding to this C-terminal domain also stimulates flippase activity in TGN membrane preparations. These interactions imply the presence of a novel coincidence detection system used to activate phospholipid translocation at sites of vesicle formation.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Organelle identity and the signposts for membrane traffic.

          Eukaryotic cells have systems of internal organelles to synthesize lipids and membrane proteins, to release secreted proteins, to take up nutrients and to degrade membrane-bound and internalized molecules. Proteins and lipids move from organelle to organelle using transport vesicles. The accuracy of this traffic depends upon organelles being correctly recognized. In general, organelles are identified by the activated GTPases and specific lipid species that they display. These short-lived determinants provide organelles with an identity that is both unique and flexible. Recent studies have helped to establish how cells maintain and restrict these determinants and explain how this system is exploited by invading pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi.

            Phosphatidylinositol 4 phosphate [PI(4)P] is essential for secretion in yeast, but its role in mammalian cells is unclear. Current paradigms propose that PI(4)P acts primarily as a precursor to phosphatidylinositol 4,5 bisphosphate (PIP2), an important plasma membrane regulator. We found that PI(4)P is enriched in the mammalian Golgi, and used RNA interference (RNAi) of PI4KIIalpha, a Golgi resident phosphatidylinositol 4 kinase, to determine whether PI(4)P directly regulates the Golgi. PI4KIIalpha RNAi decreases Golgi PI(4)P, blocks the recruitment of clathrin adaptor AP-1 complexes to the Golgi, and inhibits AP-1-dependent functions. This AP-1 binding defect is rescued by adding back PI(4)P. In addition, purified AP-1 binds PI(4)P, and anti-PI(4)P inhibits the in vitro recruitment of cytosolic AP-1 to normal cellular membranes. We propose that PI4KIIalpha establishes the Golgi's unique lipid-defined organelle identity by generating PI(4)P-rich domains that specify the docking of the AP-1 coat machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components.

              Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and mammalian cells. Previous in vitro binding studies identified phosphatidylinositol (PtdIns) (4)P and PtdIns(4,5)P(2) as candidate ligands, but it is not known which is recognized in vivo and whether phosphoinositide specificity can account for Golgi-specific targeting. We have examined the distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases. We find that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PtdIns at the 3 or 5 positions and that a PH domain specific for PtdIns(4,5)P(2) is targeted exclusively to the plasma membrane. However, a mutant version of the OSBP PH domain that does not bind phosphoinositides in vitro still shows some targeting in vivo. This targeting is independent of Pik1p but dependent on the Golgi GTPase Arf1p. Phosphorylation of PtdIns at the 4 position but not conversion to PtdIns(4,5)P(2) contributes to recruitment of PH domains to the Golgi apparatus. However, potential phosphoinositide ligands for these PH domains are not restricted to the Golgi, and the OSBP PH domain also recognizes a second determinant that is ARF dependent, indicating that organelle specificity reflects a combinatorial interaction.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nature cell biology
                1465-7392
                1476-4679
                15 September 2009
                8 November 2009
                December 2009
                1 June 2010
                : 11
                : 12
                : 1421-1426
                Affiliations
                [1 ]Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA.
                [2 ]Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
                [3 ]Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France
                Author notes
                [* ]To whom correspondence should be addressed. tr.graham@ 123456vanderbilt.edu Phone: (615) 343-1835 Fax: (615)343-6707
                Article
                nihpa145407
                10.1038/ncb1989
                2787759
                19898464
                d4a0b099-d39d-4e90-814d-78320f5c24ea

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM062367-08 ||GM
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article