5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening of Indonesian peat soil bacteria producing antimicrobial compounds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development and world-wide spread of multidrug-resistant (MDR) bacteria have a high concern in the medicine, especially the extended-spectrum of beta-lactamase (ESBL) producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). There are currently very limited effective antibiotics to treat infections caused by MDR bacteria. Peat-soil is a unique environment in which bacteria have to compete each other to survive, for instance, by producing antimicrobial substances. This study aimed to isolate bacteria from peat soils from South Kalimantan Indonesia, which capable of inhibiting the growth of Gram-positive and Gram-negative bacteria. Isolates from peat soil were grown and identified phenotypically. The cell-free supernatant was obtained from broth culture by centrifugation and was tested by agar well-diffusion technique against non ESBL-producing E. coli ATCC 25922, ESBL-producing E. coli ATCC 35218, methicillin susceptible Staphylococcus aureus (MSSA) ATCC 29,213 and MRSA ATCC 43300. Putative antimicrobial compounds were separated using SDS-PAGE electrophoresis and purified using electroelution method. Antimicrobial properties of the purified compounds were confirmed by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In total 28 isolated colonies were recovered; three (25PS, 26PS, and 27PS) isolates produced proteins with strong antimicrobial activities against both reference strains. The substance of proteins from three isolates exerted strong antimicrobial activity against ESBL-producing E. coli ATCC 35,218 (MIC = 2,80 µg/mL (25PS), 3,76 µg/mL (26PS), and 2,41 µg/mL (27PS), and MRSA ATCC 43,300 (MIC = 4,20 µg/mL (25PS), 5,65 µg/mL (26PS), and 3,62 µg/mL (27PS), and also had the ability bactericidal properties against the reference strains. There were isolates from Indonesian peat which were potentials sources of new antimicrobials.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of probiotic actions - A review.

          Probiotics are gaining more and more interest as alternatives for antibiotics or anti-inflammatory drugs. However, their mode of action is poorly understood. This review will present examples of probiotic actions from three general modes of actions into which probiotic effects can be classified. Probiotics might modulate the host's immune system, affect other microorganisms directly or act on microbial products, host products or food components. What kind of effect(s) a certain probiotic executes depends on its metabolic properties, the molecules presented at its surface or on the components secreted. Even integral parts of the bacterial cell such as its DNA or peptidoglycan might be of importance for its probiotic effectiveness. The individual combination of such properties in a certain probiotic strain determines its specific probiotic action and as a consequence its effective application for the prevention and/or treatment of a certain disease. Copyright 2009 Elsevier GmbH. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New epidemiology of Staphylococcus aureus infection in Asia.

            Not only is Asia the most populous region in the world, but inappropriate therapy, including self-medication with over-the-counter antimicrobial agents, is a common response to infectious diseases. The high antibiotic selective pressure among the overcrowded inhabitants creates an environment that is suitable for the rapid development and efficient spread of numerous multidrug-resistant pathogens. Indeed, Asia is among the regions with the highest prevalence rates of healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and community-associated methicillin-resistant S. aureus (CA-MRSA) in the world. Most hospitals in Asia are endemic for multidrug-resistant methicillin-resistant S. aureus (MRSA), with an estimated proportion from 28% (in Hong Kong and Indonesia) to >70% (in Korea) among all clinical S. aureus isolates in the early 2010s. Isolates with reduced susceptibility or a high level of resistance to glycopeptides have also been increasingly identified in the past few years. In contrast, the proportion of MRSA among community-associated S. aureus infections in Asian countries varies markedly, from 35%. Two pandemic HA-MRSA clones, namely multilocus sequence type (ST) 239 and ST5, are disseminated internationally in Asia, whereas the molecular epidemiology of CA-MRSA in Asia is characterized by clonal heterogeneity, similar to that in Europe. In this review, the epidemiology of S. aureus in both healthcare facilities and communities in Asia is addressed, with an emphasis on the prevalence, clonal structure and antibiotic resistant profiles of the MRSA strains. The novel MRSA strains from livestock animals have been considered to constitute a public health threat in western countries. The emerging livestock-associated MRSA strains in Asia are also included in this review. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics.

              A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                26 May 2020
                October 2020
                26 May 2020
                : 27
                : 10
                : 2604-2611
                Affiliations
                [a ]Department of Pharmacy, Faculty of Health, Sari Mulia University, Banjarmasin, Indonesia
                [b ]Department of Surgery, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
                [c ]Department of Clinical Microbiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
                [d ]Post Graduate Program, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
                [e ]Department Pharmacology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
                [f ]Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
                Author notes
                [* ]Corresponding author at: Department of Pharmacy, Faculty of Health, Sari Mulia University, Banjarmasin, Indonesia. mahdiyahdede@ 123456yahoo.co.id
                Article
                S1319-562X(20)30213-8
                10.1016/j.sjbs.2020.05.033
                7499089
                d4a8b888-1a38-4637-8678-71e94d3b9208
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 January 2020
                : 18 May 2020
                : 18 May 2020
                Categories
                Original Article

                peat soil bacteria,esbl-producing e. coli,mrsa,antimicrobial properties

                Comments

                Comment on this article