6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review on hepatitis D: From virology to new therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • Hepatitis D virus is a defective virus, dependent on hepatitis B virus for its assembly.

          • Hepatitis D virus infection affects 62–72 million people worldwide.

          • Chronic hepatitis D is the most severe chronic viral hepatitis.

          • Current interferon-based antiviral treatments have dismal efficiency and are poorly tolerated.

          • Host-targeting molecules inhibiting the viral life cycle are currently in clinical development.

          Abstract

          Hepatitis delta virus (HDV) is a defective virus that requires the hepatitis B virus (HBV) to complete its life cycle in human hepatocytes. HDV virions contain an envelope incorporating HBV surface antigen protein and a ribonucleoprotein containing the viral circular single-stranded RNA genome associated with both forms of hepatitis delta antigen, the only viral encoded protein. Replication is mediated by the host cell DNA-dependent RNA polymerases. HDV infects up to72 million people worldwide and is associated with an increased risk of severe and rapidly progressive liver disease. Pegylated interferon-alpha is still the only available treatment for chronic hepatitis D, with poor tolerance and dismal success rate. Although the development of antivirals inhibiting the viral replication is challenging, as HDV does not possess its own polymerase, several antiviral molecules targeting other steps of the viral life cycle are currently under clinical development: Myrcludex B, which blocks HDV entry into hepatocytes, lonafarnib, a prenylation inhibitor that prevents virion assembly, and finally REP 2139, which is thought to inhibit HBsAg release from hepatocytes and interact with hepatitis delta antigen. This review updates the epidemiology, virology and management of HDV infection.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus

          Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157–165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. DOI: http://dx.doi.org/10.7554/eLife.00049.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study

            The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate viral hepatitis by 2030. Although no virological cure exists for hepatitis B virus (HBV) infection, existing therapies to control viral replication and prophylaxis to minimise mother-to-child transmission make elimination of HBV feasible. We aimed to estimate the national, regional, and global prevalence of HBsAg in the general population and in the population aged 5 years in 2016, as well as coverage of prophylaxis, diagnosis, and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic analysis of the host response to hepatitis B virus infection.

              Previous studies in hepatitis B virus (HBV)-infected humans and chimpanzees suggest that control of HBV infection involves the cells, effector functions, and molecular mediators of the immune response. The objective of the current study was to identify, in the liver of acutely HBV-infected chimpanzees, the spectrum of virus-induced and immune response-related genes that regulate the infection. The results demonstrate that HBV does not induce any genes during entry and expansion, suggesting it is a stealth virus early in the infection. In contrast, a large number of T cell-derived IFN-gamma-regulated genes are induced in the liver during viral clearance, reflecting the impact of an adaptive T cell response that inhibits viral replication and kills infected cells, thereby terminating the infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Adv Res
                J Adv Res
                Journal of Advanced Research
                Elsevier
                2090-1232
                2090-1224
                29 March 2019
                May 2019
                29 March 2019
                : 17
                : 3-15
                Affiliations
                [a ]Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
                [b ]Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
                [c ]Division of Gastroenterology and Hepatology, Geneva University Hospitals, 1205 Geneva, Switzerland
                Author notes
                [* ]Corresponding author. sophie.clement@ 123456unige.ch
                Article
                S2090-1232(19)30075-X
                10.1016/j.jare.2019.03.009
                6526199
                31193285
                d4b0fc0e-df75-4d39-ac3b-b143bca55300
                © 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 January 2019
                : 21 March 2019
                : 22 March 2019
                Categories
                Review Article

                hepatitis delta virus,virus life cycle,chronic hepatitis,epidemiology,treatment,hepatitis delta management

                Comments

                Comment on this article