6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemical and structural biology of protein lysine deacetylases

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone acetylation is a reversible posttranslational modification that plays a fundamental role in regulating eukaryotic gene expression and chromatin structure/function. Key enzymes for removing acetyl groups from histones are metal (zinc)-dependent and NAD +-dependent histone deacetylases (HDACs). The molecular function of HDACs have been extensively characterized by various approaches including chemical, molecular, and structural biology, which demonstrated that HDACs regulate cell proliferation, differentiation, and metabolic homeostasis, and that their alterations are deeply involved in various human disorders including cancer. Notably, drug discovery efforts have achieved success in developing HDAC-targeting therapeutics for treatment of several cancers. However, recent advancements in proteomics technology have revealed much broader aspects of HDACs beyond gene expression control. Not only histones but also a large number of cellular proteins are subject to acetylation by histone acetyltransferases (HATs) and deacetylation by HDACs. Furthermore, some of their structures can flexibly accept and hydrolyze other acyl groups on protein lysine residues. This review mainly focuses on structural aspects of HDAC enzymatic activity regulated by interaction with substrates, co-factors, small molecule inhibitors, and activators.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

          Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain.

            The tumor suppressor p53 exerts antiproliferation effects through its ability to function as a sequence-specific DNA-binding transcription factor. Here, we demonstrate that p53 can be modified by acetylation both in vivo and in vitro. Remarkably, the site of p53 that is acetylated by its coactivator, p300, resides in a C-terminal domain known to be critical for the regulation of p53 DNA binding. Furthermore, the acetylation of p53 can dramatically stimulate its sequence-specific DNA-binding activity, possibly as a result of an acetylation-induced conformational change. These observations clearly indicate a novel pathway for p53 activation and, importantly, provide an example of an acetylation-mediated change in the function of a nonhistone regulatory protein. These results have significant implications regarding the molecular mechanisms of various acetyltransferase-containing transcriptional coactivators whose primary targets have been presumed to be histones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone deacetylases and cancer: causes and therapies.

              Together, histone acetyltransferases and histone deacetylases (HDACs) determine the acetylation status of histones. This acetylation affects the regulation of gene expression, and inhibitors of HDACs have been found to cause growth arrest, differentiation and/or apoptosis of many tumours cells by altering the transcription of a small number of genes. HDAC inhibitors are proving to be an exciting therapeutic approach to cancer, but how do they exert this effect?
                Bookmark

                Author and article information

                Journal
                Proc Jpn Acad Ser B Phys Biol Sci
                Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci
                PJAB
                Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
                The Japan Academy (Tokyo, Japan )
                0386-2208
                1349-2896
                11 May 2017
                : 93
                : 5
                : 297-321
                Affiliations
                [*1 ]RIKEN Center for Sustainable Resource Science, Saitama, Japan.
                [*2 ]Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
                Author notes
                []Correspondence should be addressed: M. Yoshida, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan (e-mail: yoshidam@ 123456riken.jp ).

                (Communicated by Teruhiko BEPPU, M.J.A.)

                Article
                pjab-93-297
                10.2183/pjab.93.019
                5489435
                28496053
                d4b18108-65cc-4b0d-9f42-9a80986104a6
                © 2017 The Japan Academy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 October 2016
                : 21 March 2017
                Categories
                Review

                Life sciences
                acetylation,acylation,cancer,chromatin,epigenetics,sirtuin
                Life sciences
                acetylation, acylation, cancer, chromatin, epigenetics, sirtuin

                Comments

                Comment on this article