57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasites in the Fossil Record: A Cretaceous Fauna with Isopod-Infested Decapod Crustaceans, Infestation Patterns through Time, and a New Ichnotaxon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parasites are common in modern ecosystems and are also known from the fossil record. One of the best preserved and easily recognisable examples of parasitism in the fossil record concerns isopod-induced swellings in the branchial chamber of marine decapod crustaceans. However, very limited quantitative data on the variability of infestation percentages at the species, genus, and family levels are available. Here we provide this type of data for a mid-Cretaceous (upper Lower Cretaceous, upper Albian) reef setting at Koskobilo, northern Spain, on the basis of 874 specimens of anomurans and brachyurans. Thirty-seven specimens (4.2%), arranged in ten species, are infested. Anomurans are more heavily infested than brachyurans, variability can be high within genera, and a relationship may exist between the number of specimens and infestation percentage per taxon, possibly suggesting host-specificity. We have also investigated quantitative patterns of infestation through geological time based on 88 infested species (25 anomurans, 55 brachyurans, seven lobsters, and one shrimp), to show that the highest number of infested species can be found in the Late Jurassic, also when corrected for the unequal duration of epochs. The same Late Jurassic peak is observed for the percentage of infested decapod species per epoch. This acme is caused entirely by infested anomurans and brachyurans. Biases (taphonomic and otherwise) and causes of variability with regard to the Koskobilo assemblage and infestation patterns through time are discussed. Finally, a new ichnogenus and -species, Kanthyloma crusta, are erected to accommodate such swellings or embedment structures (bioclaustrations).

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)

          Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of undescribed species, reflecting our knowledge of host diversity patterns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

            Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Animal Behavior Frozen in Time: Gregarious Behavior of Early Jurassic Lobsters within an Ammonoid Body Chamber

              Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 March 2014
                : 9
                : 3
                : e92551
                Affiliations
                [1 ]Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
                [2 ]Department of Geology, Kent State University, Kent, Ohio, United States of America
                [3 ]Museo Geológico del Seminario de Barcelona, Barcelona, Spain
                [4 ]Oertijdmuseum De Groene Poort, Boxtel, The Netherlands
                [5 ]Naturalis Biodiversity Center, Leiden, The Netherlands
                [6 ]Natuurhistorisch Museum Maastricht, Maastricht, The Netherlands
                University of Western Ontario, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AAK PA BWMVB RHBF JWMJ. Performed the experiments: AAK PA BWMVB RHBF JWMJ. Analyzed the data: AAK PA BWMVB RHBF JWMJ. Contributed reagents/materials/analysis tools: AAK PA BWMVB RHBF JWMJ. Wrote the paper: AAK PA BWMVB RHBF JWMJ. Commenting on the manuscript: AAK PA BWMVB RHBF JWMJ.

                Article
                PONE-D-13-25778
                10.1371/journal.pone.0092551
                3965447
                24667587
                d4bc6344-e666-4b4c-ac5b-febe247fd504
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 June 2013
                : 21 February 2014
                Page count
                Pages: 17
                Funding
                Fieldwork at Koskobilo was in part supported by the Molengraaff Fonds, an Amoco Alumni Scholarship, a Graduate Student Senate (Kent State University) research grant, and a Sigma Gamma Epsilon (Gamma Zeta Chapter) research grant to AAK, as well as an NSF grant (EF-0531670) to Feldmann and Schweitzer. This work was further supported by the Jon L. and Beverly A. Thompson Endowment Fund (Florida Museum of Natural History, University of Florida) to AAK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Evolutionary Ecology
                Marine Ecology
                Paleoecology
                Paleontology
                Paleobiology
                Paleozoology
                Invertebrate Paleontology
                Taphonomy
                Taxonomy
                Evolutionary Biology
                Evolutionary Systematics
                Zoology
                Animal Behavior
                Earth Sciences
                Ecology and Environmental Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article