5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melt pool morphology in directed energy deposition additive manufacturing process

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Directed Energy Deposition Additive Manufacturing (DED-AM) is one of the principal AM techniques being explored for both the repair of high value components in the aerospace industry as well as freeform fabrication of large metallic components. However, the lack of fundamental understanding of the underlying process-structure-property relationships hinders the utilisation of DED-AM for the production or repair of safety-critical components. This study uses in situ and operando synchrotron X-ray imaging to provide an improved fundamental understanding of laser-matter interactions and their influence on the melt pool geometry. Coupled with process modelling, these unique observations illustrate how process parameters can influence the DED-AM melt pool geometry. The calibrated simulation can be used for guidance in an industrial additive manufacturing process for microstructure and quality control.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing

            The laser–matter interaction and solidification phenomena associated with laser additive manufacturing (LAM) remain unclear, slowing its process development and optimisation. Here, through in situ and operando high-speed synchrotron X-ray imaging, we reveal the underlying physical phenomena during the deposition of the first and second layer melt tracks. We show that the laser-induced gas/vapour jet promotes the formation of melt tracks and denuded zones via spattering (at a velocity of 1 m s−1). We also uncover mechanisms of pore migration by Marangoni-driven flow (recirculating at a velocity of 0.4 m s−1), pore dissolution and dispersion by laser re-melting. We develop a mechanism map for predicting the evolution of melt features, changes in melt track morphology from a continuous hemi-cylindrical track to disconnected beads with decreasing linear energy density and improved molten pool wetting with increasing laser power. Our results clarify aspects of the physics behind LAM, which are critical for its development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

              We employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α ’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.
                Bookmark

                Author and article information

                Journal
                IOP Conference Series: Materials Science and Engineering
                IOP Conf. Ser.: Mater. Sci. Eng.
                IOP Publishing
                1757-8981
                1757-899X
                May 01 2020
                May 01 2020
                : 861
                : 1
                : 012012
                Article
                10.1088/1757-899X/861/1/012012
                d4bd3ccd-281f-442d-a9c8-c13e7606231d
                © 2020

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article