4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluating and optimizing performance of public–private partnership projects using copula Bayesian network

      , ,
      Engineering, Construction and Architectural Management
      Emerald

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Being an efficient mechanism for the value of money, public–private partnership (PPP) is one of the most prominent approaches for infrastructure construction. Hence, many controversies about the performance effectiveness of these delivery systems have been debated. This research aims to develop a novel performance management perspective by revealing the causal effect of key performance indicators (KPIs) on PPP infrastructures.

          Design/methodology/approach

          The literature review was used in this study to extract the PPPs KPIs. Experts’ judgment and interviews, as well as questionnaires, were designed to obtain data. Copula Bayesian network (CBN) has been selected to achieve the research purpose. CBN is one of the most potent tools in statistics for analyzing the causal relationship of different elements and considering their quantitive impact on each other. By utilizing this technique and using Python as one of the best programming languages, this research used machine learning methods, SHAP and XGBoost, to optimize the network.

          Findings

          The sensitivity analysis of the KPIs verified the causation importance in PPPs performance management. This study determined the causal structure of KPIs in PPP projects, assessed each indicator’s priority to performance, and found 7 of them as a critical cluster to optimize the network. These KPIs include innovation for financing, feasibility study, macro-environment impact, appropriate financing option, risk identification, allocation, sharing, and transfer, finance infrastructure, and compliance with the legal and regulatory framework.

          Practical implications

          Identifying the most scenic indicators helps the private sector to allocate the limited resources more rationally and concentrate on the most influential parts of the project. It also provides the KPIs’ critical cluster that should be controlled and monitored closely by PPP project managers. Additionally, the public sector can evaluate the performance of the private sector more accurately. Finally, this research provides a comprehensive causal insight into the PPPs’ performance management that can be used to develop management systems in future research.

          Originality/value

          For the first time, this research proposes a model to determine the causal structure of KPIs in PPPs and indicate the importance of this insight. The developed innovative model identifies the KPIs’ behavior and takes a non-linear approach based on CBN and machine learning methods while providing valuable information for construction and performance managers to allocate resources more efficiently.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          From local explanations to global understanding with explainable AI for trees

          Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are popular non-linear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here, we improve the interpretability of tree-based models through three main contributions: 1) The first polynomial time algorithm to compute optimal explanations based on game theory. 2) A new type of explanation that directly measures local feature interaction effects. 3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to i) identify high magnitude but low frequency non-linear mortality risk factors in the US population, ii) highlight distinct population sub-groups with shared risk characteristics, iii) identify non-linear interaction effects among risk factors for chronic kidney disease, and iv) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Exact game-theoretic explanations for ensemble tree-based predictions that guarantee desirable properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

            Although anaesthesiologists strive to avoid hypoxemia during surgery, reliably predicting future intraoperative hypoxemia is not currently possible. Here, we report the development and testing of a machine-learning-based system that, in real time during general anaesthesia, predicts the risk of hypoxemia and provides explanations of the risk factors. The system, which was trained on minute-by-minute data from the electronic medical records of over fifty thousand surgeries, improved the performance of anaesthesiologists when providing interpretable hypoxemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxemia events, with this system’s assistance they would anticipate 30% of them, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain patient or procedure characteristics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Kolmogorov-Smirnov Test for Goodness of Fit

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Engineering, Construction and Architectural Management
                ECAM
                Emerald
                0969-9988
                September 09 2022
                January 02 2024
                September 09 2022
                January 02 2024
                : 31
                : 1
                : 290-323
                Article
                10.1108/ECAM-05-2022-0492
                d4c6c650-5ce5-4aa2-af00-432d0def6a9a
                © 2024

                https://www.emerald.com/insight/site-policies

                History

                Comments

                Comment on this article