48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Phytogenic Compounds for Obesity and Diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation: the link between insulin resistance, obesity and diabetes.

          Recent data have revealed that the plasma concentration of inflammatory mediators, such as tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), is increased in the insulin resistant states of obesity and type 2 diabetes, raising questions about the mechanisms underlying inflammation in these two conditions. It is also intriguing that an increase in inflammatory mediators or indices predicts the future development of obesity and diabetes. Two mechanisms might be involved in the pathogenesis of inflammation. Firstly, glucose and macronutrient intake causes oxidative stress and inflammatory changes. Chronic overnutrition (obesity) might thus be a proinflammatory state with oxidative stress. Secondly, the increased concentrations of TNF-alpha and IL-6, associated with obesity and type 2 diabetes, might interfere with insulin action by suppressing insulin signal transduction. This might interfere with the anti-inflammatory effect of insulin, which in turn might promote inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Randomized Trial of a Low-Carbohydrate Diet for Obesity

            New England Journal of Medicine, 348(21), 2082-2090
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Impact of Dietary Polyphenols on Carbohydrate Metabolism

              Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                21 November 2014
                November 2014
                : 15
                : 11
                : 21505-21537
                Affiliations
                [1 ]Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Korea; E-Mails: harryjung@ 123456dgist.ac.kr (H.S.J.); limyun@ 123456dgist.ac.kr (Y.L.)
                [2 ]Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Korea
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: ekkim@ 123456dgist.ac.kr ; Tel.: +82-53-785-6111; Fax: +82-53-785-6109.
                Article
                ijms-15-21505
                10.3390/ijms151121505
                4264239
                25421245
                d4d89a17-3247-4efa-9290-a2139a77c121
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 October 2014
                : 12 November 2014
                : 14 November 2014
                Categories
                Review

                Molecular biology
                phytogenic compounds,obesity,diabetes
                Molecular biology
                phytogenic compounds, obesity, diabetes

                Comments

                Comment on this article