53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The MAP2/Tau family of microtubule-associated proteins

      research-article
      1 , 1 ,
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microtubule-associated proteins (MAPs) of the MAP2/Tau family include the vertebrate proteins MAP2, MAP4, and Tau and homologs in other animals. They are best known for their microtubule-stabilizing activity roles regulating microtubule networks but, accumulating evidence suggests a much broader range of functions. regulation of microtubule-mediated transport. Tau is also implicated in Alzheimer’s disease and other dementias.

          Abstract

          Microtubule-associated proteins (MAPs) of the MAP2/Tau family include the vertebrate proteins MAP2, MAP4, and Tau and homologs in other animals. All three vertebrate members of the family have alternative splice forms; all isoforms share a conserved carboxy-terminal domain containing microtubule-binding repeats, and an amino-terminal projection domain of varying size. MAP2 and Tau are found in neurons, whereas MAP4 is present in many other tissues but is generally absent from neurons. Members of the family are best known for their microtubule-stabilizing activity and for proposed roles regulating microtubule networks in the axons and dendrites of neurons. Contrary to this simple, traditional view, accumulating evidence suggests a much broader range of functions, such as binding to filamentous (F) actin, recruitment of signaling proteins, and regulation of microtubule-mediated transport. Tau is also implicated in Alzheimer's disease and other dementias. The ability of MAP2 to interact with both microtubules and F-actin might be critical for neuromorphogenic processes, such as neurite initiation, during which networks of microtubules and F-actin are reorganized in a coordinated manner. Various upstream kinases and interacting proteins have been identified that regulate the microtubule-stabilizing activity of MAP2/Tau family proteins.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Altered microtubule organization in small-calibre axons of mice lacking tau protein.

          The tau gene encodes a protein (Tau) that is a major neuronal microtubule-associated protein localized mostly in axons. It has microtubule-binding and tubulin-polymerizing activity in vitro and is thought to make short crossbridges between axonal microtubules. Further, tau-transfected non-neuronal cells extend long axon-like processes in which microtubule bundles resembling those in axons are formed. In contrast, tau antisense oligonucleotides selectively suppress axonal elongation in cultured neurons. Thus tau is thought to be essential for neuronal cell morphogenesis, especially axonal elongation and maintenance. To test this hypothesis, we used gene targeting to produce mice lacking the tau gene. We show that the nervous system of tau-deficient mice appears to be normal immunohistologically. Furthermore, axonal elongation is not affected in cultured neurons. But in some small-calibre axons, microtubule stability is decreased and microtubule organization is significantly changed. We observed an increase in microtubule-associated protein 1A which may compensate for the functions of tau in large-calibre axons. Our results argue against the suggested role of tau in axonal elongation but confirm that it is crucial in the stabilization and organization of axonal microtubules in a certain type of axon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tau interacts with src-family non-receptor tyrosine kinases.

            Tau and other microtubule-associated proteins promote the assembly and stabilization of neuronal microtubules. While each microtubule-associated protein has distinct properties, their in vivo roles remain largely unknown. Tau is important in neurite outgrowth and axonal development. Recently, we showed that the amino-terminal region of tau, which is not involved in microtubule interactions, is important in NGF induced neurite outgrowth in PC12 cells. Here we report that a proline rich sequence in the amino terminus of tau interacts with the SH3 domains of fyn and src non-receptor tyrosine kinases. Tau and fyn were co-immunoprecipitated from human neuroblastoma cells and co-localization of tau and fyn was visualized in co-transfected NIH3T3 cells. Co-transfection of tau and fyn also resulted in an alteration in NIH3T3 cell morphology, consistent with an in vivo interaction. Fyn-dependent tyrosine phosphorylation of tau occurred in transfected cells and tyrosine phosphorylated tau was identified in human neuroblastoma cells as well. Our data suggest that tau is involved in signal transduction pathways. An interaction between tau and fyn may serve as a mechanism by which extracellular signals influence the spatial distribution of microtubules. The tyrosine phosphorylation of tau by fyn may also have a role in neuropathogenesis, as fyn is upregulated in Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What does it mean to be natively unfolded?

              Natively unfolded or intrinsically unstructured proteins constitute a unique group of the protein kingdom. The evolutionary persistence of such proteins represents strong evidence in the favor of their importance and raises intriguing questions about the role of protein disorders in biological processes. Additionally, natively unfolded proteins, with their lack of ordered structure, represent attractive targets for the biophysical studies of the unfolded polypeptide chain under physiological conditions in vitro. The goal of this study was to summarize the structural information on natively unfolded proteins in order to evaluate their major conformational characteristics. It appeared that natively unfolded proteins are characterized by low overall hydrophobicity and large net charge. They possess hydrodynamic properties typical of random coils in poor solvent, or premolten globule conformation. These proteins show a low level of ordered secondary structure and no tightly packed core. They are very flexible, but may adopt relatively rigid conformations in the presence of natural ligands. Finally, in comparison with the globular proteins, natively unfolded polypeptides possess 'turn out' responses to changes in the environment, as their structural complexities increase at high temperature or at extreme pH.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2005
                23 December 2004
                : 6
                : 1
                : 204
                Affiliations
                [1 ]Department of Cell Biology, The Scripps Research Institute and Institute for Childhood and Neglected Diseases, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
                Article
                gb-2004-6-1-204
                10.1186/gb-2004-6-1-204
                549057
                15642108
                d4e4feb9-932a-4000-abc5-2764ad6469ea
                Copyright © 2004 BioMed Central Ltd
                History
                Categories
                Protein Family Review

                Genetics
                Genetics

                Comments

                Comment on this article