1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Liquid Biopsy in Uveal Melanoma: Are We There Yet?

      , *

      Ocular Oncology and Pathology

      S. Karger AG

      Liquid biopsy, Uveal melanoma, Biomarkers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the era of precision oncology, major strides are being made to use individual tumor information for clinical decision-making. Differing from traditional biopsy methods, the emerging practice of liquid biopsy provides a minimally invasive way of obtaining tumor cells and derived molecules. Liquid biopsy provides a means to detect and monitor disease progression, recurrence, and treatment response in a noninvasive way, and to potentially complement classical biopsy. Uveal melanoma (UM) is a unique malignancy, with diagnosis heavily reliant on imaging, few repeat biopsies, and a high rate of metastasis, which occurs hematogenously and often many years after diagnosis. In this disease setting, a noninvasive biomarker to detect, monitor, and study the disease in real time could lead to better disease understanding and patient care. While advances have been made in the detection of tumor-disseminated components, sensitivity and specificity remain important challenges. Ambiguity remains in how to interpret current findings and in how liquid biopsy can have a place in clinical practice. Related publications in UM are few compared to other cancers, but with further studies we may be able to uncover more about the biology of disseminated molecules and the mechanisms involved in the progression to metastasis.

          Related collections

          Most cited references 97

          • Record: found
          • Abstract: found
          • Article: not found

          Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer.

          A method for enumerating circulating tumor cells (CTC) has received regulatory clearance. The primary objective of this prospective study was to establish the relationship between posttreatment CTC count and overall survival (OS) in castration-resistant prostate cancer (CRPC). Secondary objectives included determining the prognostic utility of CTC measurement before initiating therapy, and the relationship of CTC to prostate-specific antigen (PSA) changes and OS at these and other time points. Blood was drawn from CRPC patients with progressive disease starting a new line of chemotherapy before treatment and monthly thereafter. Patients were stratified into predetermined Favorable or Unfavorable groups ( or =5 CTC/7.5mL). Two hundred thirty-one of 276 enrolled patients (84%) were evaluable. Patients with Unfavorable pretreatment CTC (57%) had shorter OS (median OS, 11.5 versus 21.7 months; Cox hazard ratio, 3.3; P 26 to 9.3 months). CTC are the most accurate and independent predictor of OS in CRPC. These data led to Food and Drug Administration clearance of this assay for the evaluation of CRPC.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Shedding light on the cell biology of extracellular vesicles

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in GNA11 in uveal melanoma.

              Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.).
                Bookmark

                Author and article information

                Journal
                OOP
                OOP
                10.1159/issn.2296-4657
                Ocular Oncology and Pathology
                S. Karger AG
                2296-4681
                2296-4657
                2021
                March 2021
                29 July 2020
                : 7
                : 1
                : 1-16
                Affiliations
                Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
                Author notes
                *Julia V. Burnier, Departments of Oncology and Pathology, McGill University, Cancer Research Program, MUHC-RI, 1001 Decarie Blvd, EM2.2218, Montréal, QC H4A 3J1 (Canada), julia.burnier@mcgill.ca
                Article
                508613 Ocul Oncol Pathol 2021;7:1–16
                10.1159/000508613
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Tables: 4, Pages: 16
                Categories
                Review Article

                Vision sciences, Ophthalmology & Optometry, Pathology

                Liquid biopsy, Uveal melanoma, Biomarkers

                Comments

                Comment on this article