3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The predatory mite Neoseiulus californicus (Acari: Phytoseiidae) does not respond for volatiles of maize infested by Tetranychus urticae (Acari: Tetranychidae) Translated title: O ácaro predador Neoseiulus californicus (Acari: Phytoseiidae) não responde aos voláteis de milho infestado por Tetranychus urticae (Acari: Tetranychidae)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Among the plants defense mechanisms, the induction and emission of volatile organic compounds, which can be used to attract natural enemies, such predators insects. Although well studied, the induction of plant volatiles that attract natural enemies can vary according to intensity of infestation of herbivores and the species of host plant. We investigated the olfactory behavioral responses of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) to the volatiles of infested maize (Zea mays) plants by the two-spotted spider mite Tetranychus urticae (Koch, 1836) (Acari: Tetranychidae) in early and advanced infestations. The Bt (Viptera) maize cultivar Impact® was used for tests the behavior of N. californicus. After initial and advanced infestations, the phytophagous mites T. urticae were removed, and the plants were tested using a “Y” olfactometer. The following treatments were evaluated: air vs. air, uninfested plants vs. air, uninfested plants vs. plants infested with 10 females of T. urticae, uninfested plants vs. plants infested with 100 females of T. urticae, uninfested plants vs. plants infested with 200 females of T. urticae and plants infested with 10 vs. plants infested with 200 females of T. urticae. The predatory mite N. californicus did not show preference to the treatments tested, suggesting that maize plants infested by T. urticae do not induce volatiles capable of attracting the predatory mite N. californicus. We concluded that N. californicus is not attracted by maize plants infested by T. urticae.

          Translated abstract

          Resumo Dentre os mecanismos de defesa de plantas, a indução e emissão de compostos orgânicos voláteis, podem ser utilizados para atrair inimigos naturais, como insetos predadores. Embora bem estudada, a indução dos voláteis de plantas que atraem inimigos naturais pode variar de acordo com a intensidade de infestação de herbívoros e a espécie de planta hospedeira. Investigamos as respostas comportamentais olfativas do ácaro predador Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) aos voláteis de plantas infestadas pelo ácaro-rajado Tetranychus urticae (Koch, 1836) (Acari: Tetranychidae). A cultivar de milho Bt (Viptera) Impact® foi utilizada para testar o comportamento de N. californicus. Após infestações iniciais e avançadas, os ácaros fitófagos T. urticae foram removidos e as plantas testadas em olfatômetro “Y”. Os seguintes tratamentos foram avaliados: ar vs. ar, plantas não infestadas vs. ar, plantas não infestadas vs. plantas infestadas com 10 fêmeas de T. urticae, plantas não infestadas vs. plantas infestadas com 100 fêmeas de T. urticae, plantas não infestadas vs. plantas infestadas com 200 fêmeas de T. urticae e plantas infestadas com 10 vs. plantas infestadas com 200 fêmeas de T. urticae. O ácaro predador N. californicus não mostrou preferência aos tratamentos testados, sugerindo que plantas de milho infestadas por T. urticae não induzem voláteis capazes de atrair o ácaro predador N. californicus. Concluímos que N. californicus não é atraído por plantas de milho infestadas por T. urticae.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Defensive function of herbivore-induced plant volatile emissions in nature.

          Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical complexity of volatiles from plants induced by multiple attack.

            The attack of a plant by herbivorous arthropods can result in considerable changes in the plant's chemical phenotype. The emission of so-called herbivore-induced plant volatiles (HIPV) results in the attraction of carnivorous enemies of the herbivores that induced these changes. HIPV induction has predominantly been investigated for interactions between one plant and one attacker. However, in nature plants are exposed to a variety of attackers, either simultaneously or sequentially, in shoots and roots, causing much more complex interactions than have usually been investigated in the context of HIPV. To develop an integrated view of how plants respond to their environment, we need to know more about the ways in which multiple attackers can enhance, attenuate, or otherwise alter HIPV responses. A multidisciplinary approach will allow us to investigate the underlying mechanisms of HIPV emission in terms of phytohormones, transcriptional responses and biosynthesis of metabolites in an effort to understand these complex plant-arthropod interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production.

              A volatile kairomone emitted from lima bean plants (Phaseolus lunatus) infested with the spider miteTetranychus urticae, was collected on Tenax-TA and analyzed with GC-MS. Two components were identified as the methylene monoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene and the methylene sesquiterpene (3E,7E)-4,8,12-dimethyl-1,3,7,11-tridecatetraene, respectively, after purification by preparative GC on a megabore column and recording of UV, IR, and [(1)H]NMR spectra. The response of two species of predatory mites towards the identified chemicals was tested in a Y-tube olfactometer. Four of the compounds tested, linalool (3,7-dimethyl-1,6-octadien-3-ol), (E)-β-ocimene [(3E)-3,7-dimethyl-1,3,6-octatriene], (3E)-4,8-dimethyI-1,3,7-nonatriene, and methyl salicylate attracted females ofPhytoseiulus persimilis. Linalool and methyl salicylate attracted females ofAmblyseius potentillae. The response ofA. potentillae to these two kairomone components was affected by the rearing diet of the predators in the same way as was reported for the response to the natural kairomone blend: when reared on a carotenoid-deficient diet, the predators responded to the volatile kairomone ofT. urticae, but when reared on a carotenoid-containing diet they did not. The identified kairomone components are all known from the plant kingdom. They are not known to be produced by animals de novo. In addition to biological evidence, this chemical evidence suggests that the plant is involved in production of the kairomone. Based on the present study and literature data on the response ofT. urticae to infochemicals, it is concluded that the kairomone component linalool is also a component of a volatile spider-mite dispersing pheromone.
                Bookmark

                Author and article information

                Journal
                bjb
                Brazilian Journal of Biology
                Braz. J. Biol.
                Instituto Internacional de Ecologia (São Carlos, SP, Brazil )
                1519-6984
                1678-4375
                2022
                : 82
                Affiliations
                Sete Lagoas Minas Gerais orgnameUniversidade Federal de São João del-Rei orgdiv1Departamento de Ciências Agrárias Brazil
                Article
                S1519-69842022000100185 S1519-6984(22)08200000185
                10.1590/1519-6984.239639

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 22, Pages: 0
                Product
                Product Information: website
                Categories
                Original Article

                Comments

                Comment on this article