11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exercise-Based Knee and Anterior Cruciate Ligament Injury Prevention : Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability and Health From the Academy of Orthopaedic Physical Therapy and the American Academy of Sports Physical Therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.

          Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Cohort study; Level of evidence, 2. There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P<.05) at landing was 8 degrees greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P<.001) and 20% higher ground reaction force (P<.05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005.

            The incidence of noncontact anterior cruciate ligament injuries in young to middle-aged athletes remains high. Despite early diagnosis and appropriate operative and nonoperative treatments, posttraumatic degenerative arthritis may develop. In a meeting in Atlanta, Georgia (January 2005), sponsored by the American Orthopaedic Society for Sports Medicine, a group of physicians, physical therapists, athletic trainers, biomechanists, epidemiologists, and other scientists interested in this area of research met to review current knowledge on risk factors associated with noncontact anterior cruciate ligament injuries, anterior cruciate ligament injury biomechanics, and existing anterior cruciate ligament prevention programs. This article reports on the presentations, discussions, and recommendations of this group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial.

              To investigate the effect of a structured warm-up programme designed to reduce the incidence of knee and ankle injuries in young people participating in sports. Cluster randomised controlled trial with clubs as the unit of randomisation. 120 team handball clubs from central and eastern Norway (61 clubs in the intervention group, 59 in the control group) followed for one league season (eight months). 1837 players aged 15-17 years; 958 players (808 female and 150 male) in the intervention group; 879 players (778 female and 101 male) in the control group. A structured warm-up programme to improve running, cutting, and landing technique as well as neuromuscular control, balance, and strength. The rate of acute injuries to the knee or ankle. During the season, 129 acute knee or ankle injuries occurred, 81 injuries in the control group (0.9 (SE 0.09) injuries per 1000 player hours; 0.3 (SE 0.17) in training v 5.3 (SE 0.06) during matches) and 48 injuries in the intervention group (0.5 (SE 0.11) injuries per 1000 player hours; 0.2 (SE 0.18) in training v 2.5 (SE 0.06) during matches). Fewer injured players were in the intervention group than in the control group (46 (4.8%) v (76 (8.6%); relative risk intervention group v control group 0.53, 95% confidence interval 0.35 to 0.81). A structured programme of warm-up exercises can prevent knee and ankle injuries in young people playing sports. Preventive training should therefore be introduced as an integral part of youth sports programmes.
                Bookmark

                Author and article information

                Journal
                Journal of Orthopaedic & Sports Physical Therapy
                J Orthop Sports Phys Ther
                Journal of Orthopaedic & Sports Physical Therapy (JOSPT)
                0190-6011
                1938-1344
                September 2018
                September 2018
                : 48
                : 9
                : A1-A42
                Article
                10.2519/jospt.2018.0303
                30170521
                d50d6eee-b976-4345-a126-64536f6910ca
                © 2018
                History

                Comments

                Comment on this article