68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamic Behavior of the Active and Inactive States of the Adenosine A 2A Receptor

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adenosine A 2A receptor (A 2AR) belongs to the superfamily of membrane proteins called the G-protein-coupled receptors (GPCRs) that form one of the largest superfamilies of drug targets. Deriving thermostable mutants has been one of the strategies used for crystallization of A 2AR in both the agonist and antagonist bound conformational states. The crystal structures do not reveal differences in the activation mechanism of the mutant receptors compared to the wild type receptor, that have been observed experimentally. These differences stem from the dynamic behavior of the mutant receptors. Furthermore, it is not understood how the mutations confer thermostability. Since these details are difficult to obtain from experiments, we have used atomic level simulations to elucidate the dynamic behavior of the agonist and antagonist bound mutants as well the wild type A 2AR. We found that significant enthalpic contribution leads to stabilization of both the inactive state (StaR2) and active-like state (GL31) thermostable mutants of A 2AR. Stabilization resulting from mutations of bulky residues to alanine is due to the formation of interhelical hydrogen bonds and van der Waals packing that improves the transmembrane domain packing. The thermostable mutant GL31 shows less movement of the transmembrane helix TM6 with respect to TM3 than the wild type receptor. While restricted dynamics of GL31 is advantageous in its purification and crystallization, it could also be the reason why these mutants are not efficient in activating the G proteins. We observed that the calculated stress on each residue is higher in the wild type receptor compared to the thermostable mutants, and this stress is required for activation to occur. Thus, reduced dynamic behavior of the thermostable mutants leading to lowered activation of these receptors originates from reduced stress on each residue. Finally, accurate calculation of the change in free energy for single mutations shows good correlation with the change in the measured thermostability. These results provide insights into the effect of mutations that can be incorporated in deriving thermostable mutants for other GPCRs.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.

          Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update.

            In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of an agonist-bound human A2A adenosine receptor.

              Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.
                Bookmark

                Author and article information

                Journal
                J Phys Chem B
                J Phys Chem B
                jp
                jpcbfk
                The Journal of Physical Chemistry. B
                American Chemical Society
                1520-6106
                1520-5207
                28 February 2015
                28 February 2014
                27 March 2014
                : 118
                : 12
                : 3355-3365
                Affiliations
                []Division of Immunology, Beckman Research Institute of the City of Hope , 1500 East Duarte Road, Duarte, California 91010, United States
                []Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Department of Health and Human Services, Rockville, Maryland 20852, United States
                [§ ]MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
                Author notes
                [* ]Phone: (626)301-8408. E-mail: NVaidehi@ 123456coh.org .
                Article
                10.1021/jp411618h
                3983344
                24579769
                d50f52be-c9c2-416a-91d3-d253f626e927
                Copyright © 2014 American Chemical Society
                History
                : 26 November 2013
                : 28 February 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                jp411618h
                jp-2013-11618h

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article