30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG) n. Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity.

          Author Summary

          The enzyme complex telomerase, with its two main components telomerase reverse transcriptase and telomerase RNA, plays an important role in telomere maintenance. Perturbation of telomere length regulation can ultimately result in cellular senescence (telomere shortening) and is also observed in tumor cells (increased telomere maintenance). Recent studies suggest telomerase RNAs can function independently of the telomerase complex and promote tumor development independently of telomere maintenance. Here we demonstrate that vTR, a herpesvirus-encoded telomerase RNA, serves two distinct functions in MDV-induced tumor formation. vTR has its first function early after infection, when it is part of the telomerase complex and contributes to the survival of rapidly dividing transformed cells. The second function of vTR is independent of telomerase action and essential for formation of solid lymphomas and metastasis. This latter function is likely a consequence of vTR-mediated gene regulation that is at least in part controlled by its interaction with and relocalization of RPL22, a cellular factor involved in T-cell development and virus-induced transformation. Taken together, our study demonstrates that telomerase RNA encoded by a herpesvirus is directly involved in tumor formation in vivo in a fashion that is largely independent of its function within an active telomerase complex.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Telomere shortening and tumor formation by mouse cells lacking telomerase RNA.

          To examine the role of telomerase in normal and neoplastic growth, the telomerase RNA component (mTR) was deleted from the mouse germline. mTR-/- mice lacked detectable telomerase activity yet were viable for the six generations analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral oncogenes, and generated tumors in nude mice following transformation. Telomeres were shown to shorten at a rate of 4.8+/-2.4 kb per mTR-/- generation. Cells from the fourth mTR-/- generation onward possessed chromosome ends lacking detectable telomere repeats, aneuploidy, and chromosomal abnormalities, including end-to-end fusions. These results indicate that telomerase is essential for telomere length maintenance but is not required for establishment of cell lines, oncogenic transformation, or tumor formation in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity.

            We have analyzed the de novo telomere synthesis catalyzed by the enzyme telomere terminal transferase (telomerase) from Tetrahymena. Oligonucleotides representing the G-rich strand of telomeric sequences from five different organisms specifically primed the addition of TTGGGG repeats in vitro, suggesting that primer recognition may involve a DNA structure unique to these oligonucleotides. The sequence at the 3' end of the oligonucleotide primer specified the first nucleotide added in the reaction. Furthermore, the telomerase was shown to be a ribonucleoprotein complex whose RNA and protein components were both essential for activity. After extensive purification of the enzyme by a series of five different chromatographic steps, a few small low abundance RNAs copurified with the activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol.

              The telomeric repeat amplification protocol (TRAP) is a two-step process for analyzing telomerase activity in cell or tissue extracts. Recent modifications of this sensitive assay include elimination of radioactivity by using a fluorescently labeled primer instead of a radiolabeled primer. In addition, the TRAP assay has been modified for real-time, quantitative PCR analysis. Here, we describe cost-effective procedures for detection of telomerase activity using a fluorescent-based assay as well as by using real-time PCR. These modified TRAP assays can be accomplished within 4 h (from lysis of samples to analysis of telomerase products).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2010
                August 2010
                26 August 2010
                02 September 2010
                : 6
                : 8
                : e1001073
                Affiliations
                [1 ]Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
                [2 ]Institut für Virologie, Freie Universität Berlin, Berlin, Germany
                Emory University, United States of America
                Author notes

                Conceived and designed the experiments: BBK ST NO. Performed the experiments: BK KWJ. Analyzed the data: BBK KWJ NO. Wrote the paper: BBK NO.

                Article
                10-PLPA-RA-2737R3
                10.1371/journal.ppat.1001073
                2929889
                20865127
                d51151cf-7b27-4a12-aa86-18da0d540850
                Kaufer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 February 2010
                : 27 July 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Virology
                Virology/Animal Models of Infection
                Virology/Persistence and Latency
                Virology/Virulence Factors and Mechanisms
                Virology/Viruses and Cancer

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article