9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Myopathology in times of modern imaging

      Neuropathology and Applied Neurobiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast.

          X-linked recessive myotubular myopathy (MTM1) is characterized by severe hypotonia and generalized muscle weakness, with impaired maturation of muscle fibres. We have restricted the candidate region to 280 kb and characterized two candidate genes using positional cloning strategies. The presence of frameshift or missense mutations (of which two are new mutations) in seven patients proved that one of these genes is indeed implicated in MTM1. The protein encoded by the MTM1 gene is highly conserved in yeast, which is surprising for a muscle specific disease. The protein contains the consensus sequence for the active site of tyrosine phosphatases, a wide class of proteins involved in signal transduction. At least three other genes, one located within 100 kb distal from the MTM1 gene, encode proteins with very high sequence similarities and define, together with the MTM1 gene, a new family of putative tyrosine phosphatases in man.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Muscle ultrasound in neuromuscular disorders.

            Muscle ultrasound is a useful tool in the diagnosis of neuromuscular disorders, as these disorders result in muscle atrophy and intramuscular fibrosis and fatty infiltration, which can be visualized with ultrasound. Several prospective studies have reported high sensitivities and specificities in the detection of neuromuscular disorders. Although not investigated in large series of patients, different neuromuscular disorders tend to show specific changes on muscle ultrasound, which can be helpful in differential diagnosis. For example, Duchenne muscular dystrophy results in a severe, homogeneous increase of muscle echo intensity with normal muscle thickness, whereas spinal muscular atrophy shows an inhomogeneous increase of echo intensity with severe atrophy. A major advantage of muscle ultrasound, compared to other imaging techniques, is its ability to visualize muscle movements, such as muscle contractions and fasciculations. This study reviews the possibilities and limitations of ultrasound in muscle imaging and its value as a diagnostic tool in neuromuscular disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RYR1 mutations are a common cause of congenital myopathies with central nuclei.

              Centronuclear myopathy (CNM) is a rare congenital myopathy characterized by prominence of central nuclei on muscle biopsy. CNM has been associated with mutations in MTM1, DNM2, and BIN1 but many cases remain genetically unresolved. RYR1 encodes the principal sarcoplasmic reticulum calcium release channel and has been implicated in various congenital myopathies. We investigated whether RYR1 mutations cause CNM. We sequenced the entire RYR1 coding sequence in 24 patients with a diagnosis of CNM from South Africa (n = 14) and Europe (n = 10) and identified mutations in 17 patients. The most common genotypes featured compound heterozygosity for RYR1 missense mutations and mutations resulting in reduced protein expression, including intronic splice site and frameshift mutations. The high incidence in South African patients (n = 12/14) in conjunction with recurrent RYR1 mutations associated with common haplotypes suggested the presence of founder effects. In addition to central nuclei, prominent histopathological findings included (often multiple) internalized nuclei and type 1 fiber predominance and hypotrophy with relative type 2 hypertrophy. Although cores were not typically seen on oxidative stains, electron microscopy revealed subtle abnormalities in most cases. External ophthalmoplegia, proximal weakness, and bulbar involvement were prominent clinical findings. Our findings expand the range of RYR1-related phenotypes and suggest RYR1 mutations as a common cause of congenital myopathies with central nuclei. Corresponding to recent observations in X-linked CNM, these findings indicate disturbed assembly and/or malfunction of the excitation-contraction machinery as a key mechanism in CNM and related myopathies.
                Bookmark

                Author and article information

                Journal
                Neuropathology and Applied Neurobiology
                Neuropathol Appl Neurobiol
                Wiley-Blackwell
                03051846
                February 2017
                February 15 2017
                : 43
                : 1
                : 24-43
                Article
                10.1111/nan.12385
                28111795
                d515908a-fa15-4f05-88a1-54f62c2772f9
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article