8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlorine Induces Physiological and Morphological Changes on Chicken Meat Campylobacter Isolates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Broiler chickens frequently become colonized by Campylobacter species. As a consequence, Campylobacter, can enter the poultry meat supply chain and represents a significant risk for human public health. A number of on-farm biosecurity and processing measures are used to mitigate the load of Campylobacter on chicken meat. In many countries, chlorine is commonly used as a biocide in processing plants to reduce bacterial loads on poultry carcasses but there is limited evidence of its effectiveness on Campylobacter. In this study, 116 Campylobacter isolates (89 C. jejuni and 27 C. coli) were isolated from poultry meat carcasses prior to the inside/outside wash step and used in in vitro assays exploring the efficacy of chlorine. A high proportion of isolates exhibited MIC and MBC values of 128 ppm but organic material present in the broth likely affected this result. Thus, additional bactericidal assays (time kill and chlorine inactivation) were used to characterize the response of C. jejuni isolates to different concentrations of chlorine. At 10 6 CFU, C. jejuni was found to be highly sensitive to concentrations of chlorine and was inhibited at low concentrations (0.2–2.0 ppm). At a higher bacterial load (10 8 CFU), variation in the response of different C. jejuni isolates was observed. One isolate was growth inhibited at 1.8 ppm while another required 16 ppm. At 10 8 CFU, C. jejuni could be resuscitated following exposure to chlorine highlighting a potential limitation of chlorine use. Analysis of UV leakage indicated that high chlorine concentrations resulted in increased 280 nm absorbance values suggesting bacterial membrane damage. Scanning electron and transmission electron microscopy were performed to characterize the morphological effects of chlorine exposure. Some effects of chlorine exposure included changes in shape (coccoid, or elongated), cellular degeneration, and shriveled bacterial cells. Interestingly, C. jejuni cells with normal morphology were also observed in the chlorine exposed group and represent a population of cells that could be resuscitated. This study is useful for the chicken meat industry and provides data for future optimization of chlorine use in reducing Campylobacter loads.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

          The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sources of Campylobacter colonization in broiler chickens.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poultry as a host for the zoonotic pathogen Campylobacter jejuni.

              Campylobacteriosis is the most reported foodborne gastroenteritic disease and poses a serious health burden in industrialized countries. Disease in humans is mainly caused by the zoonotic pathogen Campylobacter jejuni. Due to its wide-spread occurrence in the environment, the epidemiology of Campylobacter remains poorly understood. It is generally accepted, however, that chickens are a natural host for Campylobacter jejuni, and for Campylobacter spp. in general, and that colonized broiler chicks are the primary vector for transmitting this pathogen to humans. Several potential sources and vectors for transmitting C. jejuni to broiler flocks have been identified. Initially, one or a few broilers can become colonized at an age of >2 weeks until the end of rearing, after which the infection will rapidly spread throughout the entire flock. Such a flock is generally colonized until slaughter and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing, which can transmit this pathogen to humans. Recent genetic typing studies showed that chicken isolates can frequently be linked to human clinical cases of Campylobacter enteritis. However, despite the increasing evidence that the chicken reservoir is the number one risk factor for disease in humans, no effective strategy exists to reduce Campylobachter prevalence in poultry flocks, which can in part be explained by the incomplete understanding of the epidemiology of C. jejuni in broiler flocks. As a result, the number of human campylobacteriosis cases associated with the chicken vector remains strikingly high.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 March 2020
                2020
                : 11
                : 503
                Affiliations
                School of Animal and Veterinary Sciences, University of Adelaide , Adelaide, SA, Australia
                Author notes

                Edited by: Ozan Gundogdu, University of London, United Kingdom

                Reviewed by: Frances Colles, University of Oxford, United Kingdom; Belchiolina Beatriz Fonseca, Federal University of Uberlândia, Brazil; Basanta Raj Wagle, University of Arkansas, United States

                *Correspondence: Kapil K. Chousalkar, kapil.chousalkar@ 123456adelaide.edu.au

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00503
                7109306
                32269561
                d52cedee-27bc-4e7c-aca2-4bdd6d28338b
                Copyright © 2020 Muhandiramlage, McWhorter and Chousalkar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2020
                : 09 March 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 37, Pages: 12, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                campylobacter,chlorine inactivation,poultry meat,cell damage,bacterial resuscitation

                Comments

                Comment on this article