61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical pharmacology of tyrosine kinase inhibitors becoming generic drugs: the regulatory perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last decades, billions have been spent and huge efforts have been taken in basic and clinical cancer research [ CA Cancer J Clin 63: 11-30]. About a decade ago, the arms race between drugs and cancer cells reached a new level by introduction of tyrosine kinase inhibitors (TKI) into pharmacological anti-cancer therapy. According to their molecular mechanism of action, TKI in contrast to so-called “classic” or “conventional” cytostatics belong to the group of targeted cancer medicines, characterized by accurately fitting with biological structures (i.e. active centers of kinases). Numerous (partly orphan) indications are covered by this new class of substances. Approximately ten years after the first substances of this class of medicines were authorized, patent protection will end within the next years. The following article covers clinical meaning and regulatory status of anti-cancer TKI and gives an outlook to what is expected from the introduction of generic anti-cancer TKI.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.

          The bcr-abl oncogene, present in 95% of patients with chronic myelogenous leukemia (CML), has been implicated as the cause of this disease. A compound, designed to inhibit the Abl protein tyrosine kinase, was evaluated for its effects on cells containing the Bcr-Abl fusion protein. Cellular proliferation and tumor formation by Bcr-Abl-expressing cells were specifically inhibited by this compound. In colony-forming assays of peripheral blood or bone marrow from patients with CML, there was a 92-98% decrease in the number of bcr-abl colonies formed but no inhibition of normal colony formation. This compound may be useful in the treatment of bcr-abl-positive leukemias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies.

            Targeted therapies that inhibit receptor tyrosine kinases (RTKs) and the downstream phosphatidylinositol 3-kinase (PI3K) signaling pathway have shown promising anticancer activity, but their efficacy in the brain tumor glioblastoma multiforme (GBM) and other solid tumors has been modest. We hypothesized that multiple RTKs are coactivated in these tumors and that redundant inputs drive and maintain downstream signaling, thereby limiting the efficacy of therapies targeting single RTKs. Tumor cell lines, xenotransplants, and primary tumors indeed show multiple concomitantly activated RTKs. Combinations of RTK inhibitors and/or RNA interference, but not single agents, decreased signaling, cell survival, and anchorage-independent growth even in glioma cells deficient in PTEN, a frequently inactivated inhibitor of PI3K. Thus, effective GBM therapy may require combined regimens targeting multiple RTKs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo.

              The epidermal growth factor receptor (EGFR) and ErbB-2 transmembrane tyrosine kinases are currently being targeted by various mechanisms in the treatment of cancer. GW2016 is a potent inhibitor of the ErbB-2 and EGFR tyrosine kinase domains with IC50 values against purified EGFR and ErbB-2 of 10.2 and 9.8 nM, respectively. This report describes the efficacy in cell growth assays of GW2016 on human tumor cell lines overexpressing either EGFR or ErbB-2: HN5 (head and neck), A-431 (vulva), BT474 (breast), CaLu-3 (lung), and N87 (gastric). Normal human foreskin fibroblasts, nontumorigenic epithelial cells (HB4a), and nonoverexpressing tumor cells (MCF-7 and T47D) were tested as negative controls. After 3 days of compound exposure, average IC50 values for growth inhibition in the EGFR- and ErbB-2-overexpressing tumor cell lines were < 0.16 microM. The average selectivity for the tumor cells versus the human foreskin fibroblast cell line was 100-fold. Inhibition of EGFR and ErbB-2 receptor autophosphorylation and phosphorylation of the downstream modulator, AKT, was verified by Western blot analysis in the BT474 and HN5 cell lines. As a measure of cytotoxicity versus growth arrest, the HN5 and BT474 cells were assessed in an outgrowth assay after a transient exposure to GW2016. The cells were treated for 3 days in five concentrations of GW2016, and cell growth was monitored for an additional 12 days after removal of the compound. In each of these tumor cell lines, concentrations of GW2016 were reached where outgrowth did not occur. Furthermore, growth arrest and cell death were observed in parallel experiments, as determined by bromodeoxyuridine incorporation and propidium iodide staining. GW2016 treatment inhibited tumor xenograft growth of the HN5 and BT474 cells in a dose-responsive manner at 30 and 100 mg/kg orally, twice daily, with complete inhibition of tumor growth at the higher dose. Together, these results indicate that GW2016 achieves excellent potency on tumor cells with selectivity for tumor versus normal cells and suggest that GW2016 has value as a therapy for patients with tumors overexpressing either EGFR or ErbB-2.
                Bookmark

                Author and article information

                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central
                0392-9078
                1756-9966
                2014
                7 February 2014
                : 33
                : 1
                : 15
                Affiliations
                [1 ]Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
                Article
                1756-9966-33-15
                10.1186/1756-9966-33-15
                3922331
                24502453
                d52d60c5-bcfe-4e29-be75-7375b16fa8e7
                Copyright © 2014 Eckstein et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 January 2014
                : 3 February 2014
                Categories
                Review

                Oncology & Radiotherapy
                orphan drug status,tyrosine kinase inhibitors (tki),narrow therapeutic index drugs (ntid)

                Comments

                Comment on this article