23
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Call for Papers: Digital Platforms and Artificial Intelligence in Dementia

      Submit here by August 31, 2025

      About Dementia and Geriatric Cognitive Disorders: 2.2 Impact Factor I 4.7 CiteScore I 0.809 Scimago Journal & Country Rank (SJR)

      Call for Papers: Epidemiology of CKD and its Complications

      Submit here by August 31, 2024

      About Kidney and Blood Pressure Research: 2.3 Impact Factor I 4.8 CiteScore I 0.674 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Klotho-Based Machine Learning Model for Prediction of both Kidney and Cardiovascular Outcomes in Chronic Kidney Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          This study aimed to develop and validate machine learning (ML) models based on serum Klotho for predicting end-stage kidney disease (ESKD) and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD).

          Methods

          Five different ML models were trained to predict the risk of ESKD and CVD at three different time points (3, 5, and 8 years) using a cohort of 400 non-dialysis CKD patients. The dataset was divided into a training set (70%) and an internal validation set (30%). These models were informed by data comprising 47 clinical features, including serum Klotho. The best-performing model was selected and used to identify risk factors for each outcome. Model performance was assessed using various metrics.

          Results

          The findings showed that the least absolute shrinkage and selection operator regression model had the highest accuracy (C-index = 0.71) in predicting ESKD. The features mainly included in this model were estimated glomerular filtration rate, 24-h urinary microalbumin, serum albumin, phosphate, parathyroid hormone, and serum Klotho, which achieved the highest area under the curve (AUC) of 0.930 (95% CI: 0.897–0.962). In addition, for the CVD risk prediction, the random survival forest model with the highest accuracy (C-index = 0.66) was selected and achieved the highest AUC of 0.782 (95% CI: 0.633–0.930). The features mainly included in this model were age, history of primary hypertension, calcium, tumor necrosis factor-alpha, and serum Klotho.

          Conclusion

          We successfully developed and validated Klotho-based ML risk prediction models for CVD and ESKD in CKD patients with good performance, indicating their high clinical utility.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

            Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis

              Chronic kidney disease (CKD) is a global health burden with a high economic cost to health systems and is an independent risk factor for cardiovascular disease (CVD). All stages of CKD are associated with increased risks of cardiovascular morbidity, premature mortality, and/or decreased quality of life. CKD is usually asymptomatic until later stages and accurate prevalence data are lacking. Thus we sought to determine the prevalence of CKD globally, by stage, geographical location, gender and age. A systematic review and meta-analysis of observational studies estimating CKD prevalence in general populations was conducted through literature searches in 8 databases. We assessed pooled data using a random effects model. Of 5,842 potential articles, 100 studies of diverse quality were included, comprising 6,908,440 patients. Global mean(95%CI) CKD prevalence of 5 stages 13·4%(11·7–15·1%), and stages 3–5 was 10·6%(9·2–12·2%). Weighting by study quality did not affect prevalence estimates. CKD prevalence by stage was Stage-1 (eGFR>90+ACR>30): 3·5% (2·8–4·2%); Stage-2 (eGFR 60–89+ACR>30): 3·9% (2·7–5·3%); Stage-3 (eGFR 30–59): 7·6% (6·4–8·9%); Stage-4 = (eGFR 29–15): 0·4% (0·3–0·5%); and Stage-5 (eGFR<15): 0·1% (0·1–0·1%). CKD has a high global prevalence with a consistent estimated global CKD prevalence of between 11 to 13% with the majority stage 3. Future research should evaluate intervention strategies deliverable at scale to delay the progression of CKD and improve CVD outcomes.

                Author and article information

                Journal
                Kidney Dis (Basel)
                Kidney Dis (Basel)
                KDD
                KDD
                Kidney Diseases
                S. Karger AG (Basel, Switzerland )
                2296-9381
                2296-9357
                25 March 2024
                June 2024
                : 10
                : 3
                : 200-212
                Affiliations
                [1]Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
                Author notes
                Correspondence to: Jiachuan Xiong, xiongjc@ 123456tmmu.edu.cn or Jinghong Zhao, zhaojhmed@ 123456hotmail.com
                Article
                538510
                10.1159/000538510
                11149992
                38835404
                d53c268f-fec2-43e6-a768-1217798d9a4e
                © 2024 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) ( http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.

                History
                : 14 January 2024
                : 18 March 2024
                : 2024
                Page count
                Figures: 5, Tables: 3, References: 50, Pages: 13
                Funding
                This work was supported by Joint Funds of the National Natural Science Foundation of China (No. U22A20279), the National Key R and D Program of China (2022YFC2502501), the Natural Science Foundation of China (No. 81873605), key project of Chongqing technology development and application program (No. CSTB2023TIAD-KPX0060), and personal training program for Clinical Medicine Research of Army Medical University (No. 2018XLC1007).
                Categories
                Research Article

                chronic kidney disease,cardiovascular disease,end-stage kidney disease,prediction model,machine learning

                Comments

                Comment on this article

                Related Documents Log