6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contradictory Results in Microbiome Science Exemplified by Recent Drosophila Research

      article-commentary
      a , b ,
      mBio
      American Society for Microbiology
      Lactobacillus plantarum, aging, life span, microbiome, probiotics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterium Lactobacillus plantarum is prevalent in animal guts and is widely regarded as beneficial and probiotic. D. Fast et al. (mBio 9:e01114-18, 2018, https://doi.org/10.1128/mBio.01114-18) make the surprising discovery that L. plantarum reduces the life span of Drosophila melanogaster and link this effect with the loss and weakened proliferation of stem cells in the Drosophila gut.

          ABSTRACT

          The bacterium Lactobacillus plantarum is prevalent in animal guts and is widely regarded as beneficial and probiotic. D. Fast et al. (mBio 9:e01114-18, 2018, https://doi.org/10.1128/mBio.01114-18) make the surprising discovery that L. plantarum reduces the life span of Drosophila melanogaster and link this effect with the loss and weakened proliferation of stem cells in the Drosophila gut. These results are apparently at odds with published evidence for beneficial effects of L. plantarum, especially promoting high developmental rates and stimulating stem cell proliferation in young Drosophila. The among-study discrepancies highlight the context dependence of many effects of gut microbes on host health, likely influenced by host age and genotype, variation among bacterial strains, and diet. The diversity of results offers an opportunity to elucidate a fundamental mechanism(s) and the circumstances that dictate whether gut bacteria have positive or negative effects on host health. These studies also reinforce the value of Drosophila as an emerging model system for probiotic science.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing.

          There is growing evidence that intestinal bacteria are important beneficial partners of their metazoan hosts. Recent observations suggest a strong link between commensal bacteria, host energy metabolism, and metabolic diseases such as diabetes and obesity. As a consequence, the gut microbiota is now considered a "host" factor that influences energy uptake. However, the impact of intestinal bacteria on other systemic physiological parameters still remains unclear. Here, we demonstrate that Drosophila microbiota promotes larval growth upon nutrient scarcity. We reveal that Lactobacillus plantarum, a commensal bacterium of the Drosophila intestine, is sufficient on its own to recapitulate the natural microbiota growth-promoting effect. L. plantarum exerts its benefit by acting genetically upstream of the TOR-dependent host nutrient sensing system controlling hormonal growth signaling. Our results indicate that the intestinal microbiota should also be envisaged as a factor that influences the systemic growth of its host. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila.

            Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely understood, little is known about the effects of bacteria on gut epithelium renewal. Here, we addressed how both infectious and indigenous bacteria modulate stem cell activity in Drosophila. We show that the increased epithelium renewal observed upon some bacterial infections is a consequence of the oxidative burst, a major defense of the Drosophila gut. Additionally, we provide evidence that the JAK-STAT (Janus kinase-signal transducers and activators of transcription) and JNK (c-Jun NH(2) terminal kinase) pathways are both required for bacteria-induced stem cell proliferation. Similarly, we demonstrate that indigenous gut microbiota activate the same, albeit reduced, program at basal levels. Altered control of gut microbiota in immune-deficient or aged flies correlates with increased epithelium renewal. Finally, we show that epithelium renewal is an essential component of Drosophila defense against oral bacterial infection. Altogether, these results indicate that gut homeostasis is achieved by a complex interregulation of the immune response, gut microbiota, and stem cell activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality.

              Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                2 October 2018
                Sep-Oct 2018
                : 9
                : 5
                : e01758-18
                Affiliations
                [a ]Department of Entomology, Cornell University, Ithaca, New York, USA
                [b ]Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
                Author notes
                Address correspondence to aes326@ 123456cornell.edu .
                Article
                mBio01758-18
                10.1128/mBio.01758-18
                6168861
                30279288
                d53d0375-41fa-4786-8b2f-29d6b4e467a5
                Copyright © 2018 Douglas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 13, Pages: 3, Words: 2209
                Categories
                Commentary
                Host-Microbe Biology
                Custom metadata
                September/October 2018

                Life sciences
                lactobacillus plantarum,aging,life span,microbiome,probiotics
                Life sciences
                lactobacillus plantarum, aging, life span, microbiome, probiotics

                Comments

                Comment on this article