9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inner SPACE: 400-Micron Isotropic Resolution MRI of the Human Brain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Clinically relevant neuroanatomy is challenging to teach, learn and remember since many functionally important structures are visualized best using histology stains from serial 2D planar sections of the brain. In clinical patients, the locations of specific structures then must be inferred from spatial position and surface anatomy. A 3D MRI dataset of neuroanatomy has several advantages including simultaneous multi-planar visualization in the same brain, direct end-user manipulation of the data and image contrast identical to clinical MRI. We created 3D MRI datasets of the postmortem brain with high spatial and contrast resolution for simultaneous multi-planar visualization of complex neuroanatomy.

          Materials and Methods

          Whole human brains ( N = 6) were immersion-fixed in 4% formaldehyde for 4 weeks, then washed continuously in water for 48 h. The brains were imaged on a clinical 3-T MRI scanner with a 64-channel head and neck coil using a 3D T2-weighted sequence with 400-micron isotropic resolution (voxel = 0.064 mm 3; time = 7 h). Besides resolution, this sequence has multiple adjustments to improve contrast compared to a clinical protocol, including 93% reduced turbo factor and 77% reduced effective echo time.

          Results

          This MRI microscopy protocol provided excellent contrast resolution of small nuclei and internal myelinated pathways within the basal ganglia, thalamus, brainstem, and cerebellum. Contrast was sufficient to visualize the presence and variation of horizontal layers in the cerebral cortex. 3D isotropic resolution datasets facilitated simultaneous multi-planar visualization and efficient production of specific tailored oblique image orientations to improve understanding of complex neuroanatomy.

          Conclusion

          We created an unlabeled high-resolution digital 3D MRI dataset of neuroanatomy as an online resource for readers to download, manipulate, annotate and use for clinical practice, research, and teaching that is complementary to traditional histology-based atlases. Digital MRI contrast is quantifiable, reproducible across brains and could help validate novel MRI strategies for in vivo structure visualization.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism.

          Deep brain stimulation (DBS) has an increasing role in the treatment of idiopathic Parkinson's disease. Although, the subthalamic nucleus (STN) is the commonly chosen target, a number of groups have reported that the most effective contact lies dorsal/dorsomedial to the STN (region of the pallidofugal fibres and the rostral zona incerta) or at the junction between the dorsal border of the STN and the latter. We analysed our outcome data from Parkinson's disease patients treated with DBS between April 2002 and June 2004. During this period we moved our target from the STN to the region dorsomedial/medial to it and subsequently targeted the caudal part of the zona incerta nucleus (cZI). We present a comparison of the motor outcomes between these three groups of patients with optimal contacts within the STN (group 1), dorsomedial/medial to the STN (group 2) and in the cZI nucleus (group 3). Thirty-five patients with Parkinson's disease underwent MRI directed implantation of 64 DBS leads into the STN (17), dorsomedial/medial to STN (20) and cZI (27). The primary outcome measure was the contralateral Unified Parkinson's Disease Rating Scale (UPDRS) motor score (off medication/off stimulation versus off medication/on stimulation) measured at follow-up (median time 6 months). The secondary outcome measures were the UPDRS III subscores of tremor, bradykinesia and rigidity. Dyskinesia score, L-dopa medication reduction and stimulation parameters were also recorded. The mean adjusted contralateral UPDRS III score with cZI stimulation was 3.1 (76% reduction) compared to 4.9 (61% reduction) in group 2 and 5.7 (55% reduction) in the STN (P-value for trend <0.001). There was a 93% improvement in tremor with cZI stimulation versus 86% in group 2 versus 61% in group 1 (P-value = 0.01). Adjusted 'off-on' rigidity scores were 1.0 for the cZI group (76% reduction), 2.0 for group 2 (52% reduction) and 2.1 for group 1 (50% reduction) (P-value for trend = 0.002). Bradykinesia was more markedly improved in the cZI group (65%) compared to group 2 (56%) or STN group (59%) (P-value for trend = 0.17). There were no statistically significant differences in the dyskinesia scores, L-dopa medication reduction and stimulation parameters between the three groups. Stimulation related complications were seen in some group 2 patients. High frequency stimulation of the cZI results in greater improvement in contralateral motor scores in Parkinson's disease patients than stimulation of the STN. We discuss the implications of this finding and the potential role played by the ZI in Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            7 Tesla MRI of the ex vivo human brain at 100 micron resolution

            We present an ultra-high resolution MRI dataset of an ex vivo human brain specimen. The brain specimen was donated by a 58-year-old woman who had no history of neurological disease and died of non-neurological causes. After fixation in 10% formalin, the specimen was imaged on a 7 Tesla MRI scanner at 100 µm isotropic resolution using a custom-built 31-channel receive array coil. Single-echo multi-flip Fast Low-Angle SHot (FLASH) data were acquired over 100 hours of scan time (25 hours per flip angle), allowing derivation of synthesized FLASH volumes. This dataset provides an unprecedented view of the three-dimensional neuroanatomy of the human brain. To optimize the utility of this resource, we warped the dataset into standard stereotactic space. We now distribute the dataset in both native space and stereotactic space to the academic community via multiple platforms. We envision that this dataset will have a broad range of investigational, educational, and clinical applications that will advance understanding of human brain anatomy in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation.

              Unlike in vivo imaging, postmortem MRI allows for invasive examination of the tissue specimen immediately after the MR scan. However, natural tissue decomposition and chemical fixation cause the postmortem tissue's MRI properties to be different from those found in vivo. Moreover, these properties change as postmortem fixation time elapses. The goal of this study was to characterize the T(2) relaxation changes that occur over time in cadaveric human brain hemispheres during fixation. Five hemispheres immersed in formaldehyde solution were scanned on a weekly basis for 3 months postmortem, and once again at 6 months postmortem. The T(2) relaxation times were measured throughout the hemispheres. Over time, T(2) values near the edges of the hemispheres decreased rapidly after death, while T(2) values of deep tissue decreased more slowly. This difference is likely due to the relatively large distance from the hemisphere surface, and other barriers limiting diffusion of formaldehyde molecules to deep tissues. In addition, T(2) values in deep tissue did not continuously decay to a plateau, but instead reached a minimum and then increased to a plateau. This final increase may be due to the effects of prolonged tissue decomposition, a hypothesis that is supported by numerical simulations of the fixation process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                19 March 2020
                2020
                : 14
                : 9
                Affiliations
                [1] 1Department of Radiology, New York University , New York, NY, United States
                [2] 2Center for Advanced Imaging Innovation and Research (CAI2R) , New York, NY, United States
                [3] 3Department of Radiology, University of Pennsylvania , Philadelphia, PA, United States
                [4] 4Department of Pathology, New York University , New York, NY, United States
                [5] 5Department of Radiology, Cleveland Clinic , Cleveland, OH, United States
                [6] 6Department of Neurology, New York University , New York, NY, United States
                [7] 7Department of Psychiatry, New York University , New York, NY, United States
                Author notes

                Edited by: George Paxinos, University of New South Wales, Australia

                Reviewed by: Abbas F. Sadikot, McGill University, Canada; Mustafa Steve Kassem, University of New South Wales, Australia

                *Correspondence: Timothy M. Shepherd, timothy.shepherd@ 123456nyumc.org
                Article
                10.3389/fnana.2020.00009
                7103647
                d546f624-41eb-411a-8d5a-340e7d4ae929
                Copyright © 2020 Shepherd, Hoch, Bruno, Faustin, Papaioannou, Jones, Devinsky and Wisniewski.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 September 2019
                : 27 February 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 28, Pages: 7, Words: 0
                Funding
                Funded by: National Institute on Aging 10.13039/100000049
                Funded by: National Institute of Biomedical Imaging and Bioengineering 10.13039/100000070
                Categories
                Neuroanatomy
                Methods

                Neurosciences
                functional neurosurgery,atlas,mr microscopy,3d visualization,teaching
                Neurosciences
                functional neurosurgery, atlas, mr microscopy, 3d visualization, teaching

                Comments

                Comment on this article