9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of a Synthetic Retinoid, Ellorarxine, in the NSC-34 Cell Model of Motor Neuron Disease

      , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease worldwide and is characterized by progressive muscle atrophy. There are currently two approved treatments, but they only relieve symptoms briefly and do not cure the disease. The main hindrance to research is the complex cause of ALS, with its pathogenesis not yet fully elucidated. Retinoids (vitamin A derivatives) appear to be essential in neuronal cells and have been implicated in ALS pathogenesis. This study explores 4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquinoxalin-2-yl)ethylnyl]benzoic acid (Ellorarxine, or DC645 or NVG0645), a leading synthetic retinoic acid, discussing its pharmacological mechanisms, neuroprotective properties, and relevance to ALS. The potential therapeutic effect of Ellorarxine was analyzed in vitro using the WT and SOD1G93A NSC-34 cell model of ALS at an administered concentration of 0.3–30 nM. Histological, functional, and biochemical analyses were performed. Elorarxine significantly increased MAP2 expression and neurite length, increased AMPA receptor GluA2 expression and raised intracellular Ca2+ baseline, increased level of excitability, and reduced Ca2+ spike during depolarization in neurites. Ellorarxine also displayed both antioxidant and anti-inflammatory effects. Overall, these results suggest Ellorarxine shows relevance and promise as a novel therapeutic strategy for treatment of ALS.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of ALS: a conspiracy of genes, environment and time.

          Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease of motor neurons, resulting in worsening weakness of voluntary muscles until death from respiratory failure occurs after about 3 years. Although great advances have been made in our understanding of the genetic causes of ALS, the contribution of environmental factors has been more difficult to assess. Large-scale studies of the clinical patterns of ALS, individual histories preceding the onset of ALS, and the rates of ALS in different populations and groups have led to improved patient care, but have not yet revealed a replicable, definitive environmental risk factor. In this Review, we outline what is currently known of the environmental and genetic epidemiology of ALS, describe the current state of the art with respect to the different types of ALS, and explore whether ALS should be considered a single disease or a syndrome. We examine the relationship between genetic and environmental risk factors, and propose a disease model in which ALS is considered to be the result of environmental risks and time acting on a pre-existing genetic load, followed by an automatic, self-perpetuating decline to death.
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target.

            The cause(s) of amyotrophic lateral sclerosis (ALS) is not fully understood in the vast majority of cases and the mechanisms involved in motor neuron degeneration are multi-factorial and complex. There is substantial evidence to support the hypothesis that oxidative stress is one mechanism by which motor neuron death occurs. This theory becomes more persuasive with the discovery that mutation of the anti-oxidant enzyme, superoxide dismutase 1 (SOD1), causes disease in a significant minority of cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration have not been defined with certainty, and trials of anti-oxidant therapies have been disappointing. Here, we review the evidence implicating oxidative stress in ALS pathogenesis, discuss how oxidative stress may affect and be affected by other proposed mechanisms of neurodegeneration, and review the trials of various anti-oxidants as potential therapies for ALS.
              • Record: found
              • Abstract: found
              • Article: not found

              Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation.

              Inflammatory activation of microglia in response to neurodegenerative changes in diseases such as Alzheimer's disease (AD) and Parkinson's disease has been extensively described. These observations have suggested that inflammation could be contributing to disease progression. In this paper, the potential role of CD200 and CD200 receptor (CD200R), whose known functions are to activate anti-inflammatory pathways and induce immune tolerance through binding of CD200 to CD200 receptor (CD200R), was studied in AD. Quantitative studies showed a significant decrease in CD200 protein and mRNA in AD hippocampus and inferior temporal gyrus, but not cerebellum. Immunohistochemistry of brain tissue sections of hippocampus, superior frontal gyrus, inferior temporal gyrus and cerebellum from AD and non-demented cases demonstrated a predominant, though heterogeneous, neuronal localization for CD200. Decreased neuronal expression was apparent in brain regions affected by AD pathology. There was also a significant decrease in CD200R mRNA expression in AD hippocampus and inferior temporal gyrus, but not cerebellum. Low expression of CD200R by microglia was confirmed at the mRNA and protein level using cultured human microglia compared to blood-derived macrophages. Treatment of microglia and macrophages with interleukin-4 and interleukin-13 significantly increased expression of CD200R. Expression of these cytokines was not generally detectable in brain. These data indicate that the anti-inflammatory CD200/CD200R system may be deficient in AD brains. Mechanisms aimed at increasing levels of CD200 and CD200R could have therapeutic potential for controlling inflammation in human neurodegenerative diseases.

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                September 2024
                September 10 2024
                : 25
                : 18
                : 9764
                Article
                10.3390/ijms25189764
                d54c50ff-f4c5-4b52-8ee4-3015e3ff839f
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log