24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular pathology of human prion disease

      review-article
      ,
      Acta Neuropathologica
      Springer-Verlag

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects.

          Phenotypic heterogeneity in sporadic Creutzfeldt-Jakob disease (sCJD) is well documented, but there is not yet a systematic classification of the disease variants. In a previous study, we showed that the polymorphic codon 129 of the prion protein gene (PRNP), and two types of protease-resistant prion protein (PrP(Sc)) with distinct physicochemical properties, are major determinants of these variants. To define the full spectrum of variants, we have examined a series of 300 sCJD patients. Clinical features, PRNP genotype, and PrP(Sc) properties were determined in all subjects. In 187, we also studied neuropathological features and immunohistochemical pattern of PrP(Sc) deposition. Seventy percent of subjects showed the classic CJD phenotype, PrP(Sc) type 1, and at least one methionine allele at codon 129; 25% of cases displayed the ataxic and kuru-plaque variants, associated to PrP(Sc) type 2, and valine homozygosity or heterozygosity at codon 129, respectively. Two additional variants, which included a thalamic form of CJD and a phenotype characterized by prominent dementia and cortical pathology, were linked to PrP(Sc) type 2 and methionine homozygosity. Finally, a rare phenotype characterized by progressive dementia was linked to PrP(Sc) type 1 and valine homozygosity. The present data demonstrate the existence of six phenotypic variants of sCJD. The physicochemical properties of PrP(Sc) in conjunction with the PRNP codon 129 genotype largely determine this phenotypic variability, and allow a molecular classification of the disease variants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Prions as adaptive conduits of memory and inheritance.

            Changes in protein conformation drive most biological processes, but none have seized the imagination of scientists and the public alike as have the self-replicating conformations of prions. Prions transmit lethal neurodegenerative diseases by means of the food chain. However, self-replicating protein conformations can also constitute molecular memories that transmit genetic information. Here, we showcase definitive evidence for the prion hypothesis and discuss examples in which prion-encoded heritable information has been harnessed during evolution to confer selective advantages. We then describe situations in which prion-enciphered events might have essential roles in long-term memory formation, transcriptional memory and genome-wide expression patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity.

              The fundamental event in prion diseases seems to be a conformational change in cellular prion protein (PrPC) whereby it is converted into the pathologic isoform PrPSc. In fatal familial insomnia (FFI), the protease-resistant fragment of PrPSc after deglycosylation has a size of 19 kilodaltons, whereas that from other inherited and sporadic prion diseases is 21 kilodaltons. Extracts from the brains of FFI patients transmitted disease to transgenic mice expressing a chimeric human-mouse PrP gene about 200 days after inoculation and induced formation of the 19-kilodalton PrPSc fragment, whereas extracts from the brains of familial and sporadic Creutzfeldt-Jakob disease patients produced the 21-kilodalton PrPSc fragment in these mice. The results presented indicate that the conformation of PrPSc functions as a template in directing the formation of nascent PrPSc and suggest a mechanism to explain strains of prions where diversity is encrypted in the conformation of PrPSc.
                Bookmark

                Author and article information

                Contributors
                +44-20-78374888 , +44-20-78378047 , j.d.wadsworth@prion.ucl.ac.uk
                +44-20-78374888 , +44-20-78378047 , j.collinge@prion.ucl.ac.uk
                Journal
                Acta Neuropathol
                Acta Neuropathologica
                Springer-Verlag (Berlin/Heidelberg )
                0001-6322
                1432-0533
                8 August 2010
                8 August 2010
                January 2011
                : 121
                : 1
                : 69-77
                Affiliations
                MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
                Article
                735
                10.1007/s00401-010-0735-5
                3015177
                20694796
                d5574250-4501-4cd5-b09f-053283fb4f9e
                © The Author(s) 2010
                History
                : 17 May 2010
                : 29 July 2010
                : 30 July 2010
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2011

                Neurology
                Neurology

                Comments

                Comment on this article