11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway.

      American journal of respiratory cell and molecular biology
      Angiotensin I, administration & dosage, metabolism, toxicity, Angiotensin II, Angiotensin II Type 1 Receptor Blockers, pharmacology, Animals, Apoptosis, Bleomycin, Cells, Cultured, Collagen Type I, Disease Models, Animal, Enzyme Activation, Extracellular Signal-Regulated MAP Kinases, antagonists & inhibitors, Fibroblasts, enzymology, pathology, Humans, Infusions, Subcutaneous, Lung, drug effects, MAP Kinase Signaling System, Male, NF-kappa B, Peptide Fragments, Peptidyl-Dipeptidase A, Phosphorylation, Pneumonia, chemically induced, Protein Kinase Inhibitors, Proto-Oncogene Proteins, Pulmonary Fibrosis, prevention & control, Rats, Rats, Wistar, Receptors, G-Protein-Coupled, bcl-X Protein

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence has demonstrated that up-regulation of the angiotensin (Ang)-converting enzyme (ACE)/AngII/AngII type 1 receptor (AT1R) axis aggravates pulmonary fibrosis. The recently discovered ACE2/Ang-(1-7)/Mas axis, which counteracts the activity of the ACE/AngII/AT1R axis, has been shown to protect against pulmonary fibrosis. However, the mechanisms by which ACE2 and Ang-(1-7) attenuate pulmonary fibrosis remain unclear. We hypothesized that up-regulation of the ACE2/Ang-(1-7)/Mas axis protects against bleomycin (BLM)-induced pulmonary fibrosis by inhibiting the mitogen-activated protein kinase (MAPK)/NF-κB pathway. In vivo, Ang-(1-7) was continuously infused into Wistar rats that had received BLM or AngII. In vitro, human fetal lung-1 cells were pretreated with compounds that block the activities of AT1R, Mas (A-779), and MAPKs before exposure to AngII or Ang-(1-7). The human fetal lung-1 cells were infected with lentivirus-mediated ACE2 before exposure to AngII. In vivo, Ang-(1-7) prevented BLM-induced lung fibrosis and AngII-induced lung inflammation by inhibiting the MAPK phosphorylation and NF-κB signaling cascades. However, exogenous Ang-(1-7) alone clearly promoted lung inflammation. In vitro, Ang-(1-7) and lentivirus-mediated ACE2 inhibited the AngII-induced MAPK/NF-κB pathway, thereby attenuating inflammation and α-collagen I production, which could be reversed by the Mas inhibitor, A-779. Ang-(1-7) inhibited AngII-induced lung fibroblast apoptotic resistance via inhibition of the MAPK/NF-κB pathway and activation of the BCL-2-associated X protein/caspase-dependent mitochondrial apoptotic pathway. Ang-(1-7) alone markedly stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation and the NF-κB cascade. Up-regulation of the ACE2/Ang-(1-7)/Mas axis protected against pulmonary fibrosis by inhibiting the MAPK/NF-κB pathway. However, close attention should be paid to the proinflammatory effects of Ang-(1-7).

          Related collections

          Author and article information

          Comments

          Comment on this article