841
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Creatine and Creatinine Metabolism

      1 , 1
      Physiological Reviews
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.

          Related collections

          Most cited references875

          • Record: found
          • Abstract: found
          • Article: not found

          Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise.

          This study examined the contribution of phosphocreatine (PCr) and aerobic metabolism during repeated bouts of sprint exercise. Eight male subjects performed two cycle ergometer sprints separated by 4 min of recovery during two separate main trials. Sprint 1 lasted 30 s during both main trials, whereas sprint 2 lasted either 10 or 30 s. Muscle biopsies were obtained at rest, immediately after the first 30-s sprint, after 3.8 min of recovery, and after the second 10- and 30-s sprints. At the end of sprint 1, PCr was 16.9 +/- 1.4% of the resting value, and muscle pH dropped to 6.69 +/- 0.02. After 3.8 min of recovery, muscle pH remained unchanged (6.80 +/- 0.03), but PCr was resynthesized to 78.7 +/- 3.3% of the resting value. PCr during sprint 2 was almost completely utilized in the first 10 s and remained unchanged thereafter. High correlations were found between the percentage of PCr resynthesis and the percentage recovery of power output and pedaling speed during the initial 10 s of sprint 2 (r = 0.84, P < 0.05 and r = 0.91, P < 0.01). The anaerobic ATP turnover, as calculated from changes in ATP, PCr, and lactate, was 235 +/- 9 mmol/kg dry muscle during the first sprint but was decreased to 139 +/- 7 mmol/kg dry muscle during the second 30-s sprint, mainly as a result of a approximately 45% decrease in glycolysis. Despite this approximately 41% reduction in anaerobic energy, the total work done during the second 30-s sprint was reduced by only approximately 18%. This mismatch between anaerobic energy release and power output during sprint 2 was partly compensated for by an increased contribution of aerobic metabolism, as calculated from the increase in oxygen uptake during sprint 2 (2.68 +/- 0.10 vs. 3.17 +/- 0.13 l/min; sprint 1 vs. sprint 2; P < 0.01). These data suggest that aerobic metabolism provides a significant part (approximately 49%) of the energy during the second sprint, whereas PCr availability is important for high power output during the initial 10 s.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation.

            1. The present study was undertaken to test whether creatine given as a supplement to normal subjects was absorbed, and if continued resulted in an increase in the total creatine pool in muscle. An additional effect of exercise upon uptake into muscle was also investigated. 2. Low doses (1g of creatine monohydrate or less in water) produced only a modest rise in the plasma creatine concentration, whereas 5g resulted in a mean peak after 1h of 795 (SD 104) mumol/l in three subjects weighing 76-87 kg. Repeated dosing with 5g every 2h sustained the plasma concentration at around 1000 mumol/l. A single 5g dose corresponds to the creatine content of 1.1 kg of fresh, uncooked steak. 3. Supplementation with 5g of creatine monohydrate, four or six times a day for 2 or more days resulted in a significant increase in the total creatine content of the quadriceps femoris muscle measured in 17 subjects. This was greatest in subjects with a low initial total creatine content and the effect was to raise the content in these subjects closer to the upper limit of the normal range. In some the increase was as much as 50%. 4. Uptake into muscle was greatest during the first 2 days of supplementation accounting for 32% of the dose administered in three subjects receiving 6 x 5g of creatine monohydrate/day. In these subjects renal excretion was 40, 61 and 68% of the creatine dose over the first 3 days. Approximately 20% or more of the creatine taken up was measured as phosphocreatine. No changes were apparent in the muscle ATP content.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease.

              beta-Amyloid is a 39- to 43-amino-acid neurotoxic peptide that aggregates to form the core of Alzheimer disease-associated senile (amyloid) plaques. No satisfactory hypothesis has yet been proposed to explain the mechanism of beta-amyloid aggregation and toxicity. We present mass spectrometric and electron paramagnetic resonance spin trapping evidence that beta-amyloid, in aqueous solution, fragments and generates free radical peptides. beta-Amyloid fragments, at concentrations that previously have been shown to be neurotoxic to cultured neurons, can inactivate oxidation-sensitive glutamine synthetase and creatine kinase enzymes. Also, salicylate hydroxylation assays indicate that reactive oxygen species are generated by the beta-amyloid-(25-35) fragment during cell-free incubation. These results are formulated into a free radical-based unifying hypothesis for neurotoxicity of beta-amyloid and are discussed with reference to membrane molecular alterations in Alzheimer disease.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                July 01 2000
                July 01 2000
                : 80
                : 3
                : 1107-1213
                Affiliations
                [1 ]F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland; Avicena Group, Cambridge; and Dana Farber Cancer Institute, Division of Cancer Pharmacology, Boston, Massachusetts
                Article
                10.1152/physrev.2000.80.3.1107
                10893433
                d55e0765-d7c8-4f33-966e-58d8ccf8d3b5
                © 2000
                History

                Comments

                Comment on this article