38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy

      , , ,
      Advanced Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Photodynamic therapy and anti-tumour immunity.

          Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fabrication of novel biomaterials through molecular self-assembly.

            Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Albumin-based nanoparticles as potential controlled release drug delivery systems.

              Albumin, a versatile protein carrier for drug delivery, has been shown to be nontoxic, non-immunogenic, biocompatible and biodegradable. Therefore, it is ideal material to fabricate nanoparticles for drug delivery. Albumin nanoparticles have gained considerable attention owing to their high binding capacity of various drugs and being well tolerated without any serious side-effects. The current review embodies an in-depth discussion of albumin nanoparticles with respect to types, formulation aspects, major outcomes of in vitro and in vivo investigations as well as site-specific drug targeting using various ligands modifying the surface of albumin nanoparticles with special insights to the field of oncology. Specialized nanotechnological techniques like desolvation, emulsification, thermal gelation and recently nano-spray drying, nab-technology and self-assembly that have been investigated for fabrication of albumin nanoparticles, are also discussed. Nanocomplexes of albumin with other components in the area of drug delivery are also included in this review. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley-Blackwell
                09359648
                March 2017
                March 2017
                : 29
                : 12
                : 1605021
                Article
                10.1002/adma.201605021
                28060418
                d58f0841-9a25-4c7b-9480-199fcde7ba37
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article