20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalised nutrition and health

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jose Ordovas and colleagues consider that nutrition interventions tailored to individual characteristics and behaviours have promise but more work is needed before they can deliver

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses.

          Bread is consumed daily by billions of people, yet evidence regarding its clinical effects is contradicting. Here, we performed a randomized crossover trial of two 1-week-long dietary interventions comprising consumption of either traditionally made sourdough-leavened whole-grain bread or industrially made white bread. We found no significant differential effects of bread type on multiple clinical parameters. The gut microbiota composition remained person specific throughout this trial and was generally resilient to the intervention. We demonstrate statistically significant interpersonal variability in the glycemic response to different bread types, suggesting that the lack of phenotypic difference between the bread types stems from a person-specific effect. We further show that the type of bread that induces the lower glycemic response in each person can be predicted based solely on microbiome data prior to the intervention. Together, we present marked personalization in both bread metabolism and the gut microbiome, suggesting that understanding dietary effects requires integration of person-specific factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Patient-centered activity monitoring in the self-management of chronic health conditions

            Background As activity tracking devices become smaller, cheaper, and more consumer-accessible, they will be used more extensively across a wide variety of contexts. The expansion of activity tracking and personal data collection offers the potential for patient engagement in the management of chronic diseases. Consumer wearable devices for activity tracking have shown promise in post-surgery recovery in cardiac patients, pulmonary rehabilitation, and activity counseling in diabetic patients, among others. Unfortunately, the data generated by wearable devices is seldom integrated into programmatic self-management chronic disease regimens. In addition, there is lack of evidence supporting sustained use or effects on health outcomes, as studies have primarily focused on establishing the feasibility of monitoring activity and the association of measured activity with short-term benefits. Discussion Monitoring devices can make a direct and real-time impact on self-management, but the validity and reliability of measurements need to be established. In order for patients to become engaged in wearable data gathering, key patient-centered issues relating to usefulness in care, motivation, the safety and privacy of information, and clinical integration need to be addressed. Because the successful usage of wearables requires an ability to comprehend and utilize personal health data, the user experience should account for individual differences in numeracy skills and apply evidence-based behavioral science principles to promote continued engagement. Summary Activity monitoring has the potential to engage patients as advocates in their personalized care, as well as offer health care providers real world assessments of their patients’ daily activity patterns. This potential will be realized as the voice of the chronic disease patients is accounted for in the design of devices, measurements are validated against existing clinical assessments, devices become part of the treatment ‘prescription’, behavior change programs are used to engage patients in self-management, and best practices for clinical integration are defined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study

              Introduction Diabetes is currently estimated to affect 382 million people worldwide [1], with severe consequences for the health and economy of developed and developing nations alike. Type 2 diabetes (T2D) is thought to originate from an interplay between genetic and lifestyle factors, an hypothesis first put forward 50 years ago [2]. Lifestyle interventions can reduce the risk of progression to diabetes in high-risk individuals by 50% or more [3]–[6]; however, whether the consequences of adverse lifestyles differ according to the underlying genetic susceptibility to T2D remains uncertain. Considerable progress has been made recently in the discovery of the genetic basis of T2D and related metabolic traits [7], which now enables formal investigation of the interaction between genes and lifestyle in the risk of developing T2D. The Diabetes Prevention Program (DPP) study detected no significant interactions between treatment groups and genetic risk assessed on the basis of 34 T2D loci established at the time [8]. However, this study included only high-risk individuals and may have been underpowered because of the small number of people in each sub-group (947 in the placebo group, 955 in the lifestyle intervention group, and the 941 metformin group), even in this relatively large intervention trial. A complementary approach to the analysis of lifestyle trials is the investigation of interactions between genetic and lifestyle factors in observational cohort studies. However, such interactions have not been systematically investigated in prospective cohorts with standardised assessment of lifestyle factors at baseline and adequate statistical power. We therefore sought to investigate this question in a large case-cohort study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Methods Ethics Statement All participants gave written informed consent, and the study was approved by the local ethics committees in the participating countries and the Internal Review Board of the International Agency for Research on Cancer. Population The design and methods of the InterAct case-cohort study have previously been described [9]. InterAct is a case-cohort study nested within the EPIC cohort, and the project involves 29 institutions in nine European countries. Ascertainment of incident T2D involved a review of the existing EPIC datasets at each centre using multiple sources of evidence including self-report, linkage to primary-care registers, secondary-care registers, medication use (drug registers), hospital admissions, and mortality data. Information from any follow-up visit or external evidence with a date later than the baseline visit was used. To increase the specificity of the case definition, we sought further evidence for all cases with information on incident T2D from fewer than two independent sources, including seeking information via individual medical records review in some centres. Cases in Denmark and Sweden were not ascertained by self-report, but identified via local and national diabetes and pharmaceutical registers, and hence all ascertained cases were considered to be verified. Follow-up was censored at the date of diagnosis, 31 December 2007, or the date of death, whichever occurred first. All ascertained cases with any evidence of diabetes at baseline were excluded. Prevalent diabetes was identified on the basis of baseline self-report of a history of diabetes, doctor-diagnosed diabetes, diabetes drug use, or evidence of diabetes after baseline with a date of diagnosis earlier than the baseline recruitment date. A total of 340,234 participants of European descent were followed up for 3.99 million person-years (mean [range] follow-up of 11.7 [0–17.5] y), during which 12,403 verified incident cases of T2D were identified [1]. Individuals without stored blood (n = 109,625) or without reported diabetes status (n = 5,821) were excluded. A centre-stratified, random sub-cohort of 16,835 individuals was selected. After exclusion of 548 individuals with prevalent diabetes and 133 with unknown diabetes status, the sub-cohort included 16,154 individuals for analysis. By design, because of the random selection, this sub-cohort also included a set of 778 individuals who developed incident T2D during follow-up. Participants in the random sub-cohort were similar to all EPIC participants eligible for inclusion in InterAct [9]. InterAct cases were followed-up for a mean (standard deviation [SD]) of 6.9 (3.3) y, and 49.8% were men. The overall incidence of T2D in InterAct was 3.8 per 1,000 person-years of follow-up. Measurements Weight and height were measured with participants not wearing shoes and in light clothing or underwear in the majority of centres [10]. Waist circumference (WC) was measured either at the narrowest circumference of the torso or at the midpoint between the lower ribs and the iliac crest. Hip circumference was measured horizontally at the level of the largest lateral extension of the hips or over the buttocks. For a subset of the Oxford participants (n = 363), only self-reported waist and hip circumferences were available. Each participant's body weight and waist and hip circumferences were corrected for the clothing worn during measurement in order to reduce heterogeneity due to protocol differences among centres. Correction included adjustment for self-reporting in Oxford participants using a prediction equation based on a comparison of self-reported and measured data in a sample of 5,000 of the Oxford general population [10],[11]. Body mass index (BMI) was calculated as weight (kg)/height (m) squared. Waist–hip ratio was calculated and expressed as a percentage. Measures of waist and hip circumference were not performed in Umeå, Sweden (n = 1,845), and were missing in an additional 173 and 193 InterAct participants, respectively [12]. Standardised information was collected by questionnaire at baseline on education, smoking status [13], and diabetes family history [14]. Physical activity was based on a brief questionnaire covering occupation and recreational activity, which was summarised into an ordered categorical overall physical activity index (inactive, moderately inactive, moderately active, and active) that has been validated in the populations participating in EPIC [15],[16]. In one of the centres (Umeå, Sweden), a slightly different questionnaire was used to assess physical activity. From this questionnaire we derived a four-category index similar to that derived from all other study locations based on two questions on occupational and leisure time physical activity [16]. Usual food intake was estimated using country-specific validated dietary questionnaires. Estimated individual nutrient intakes were derived from foods included in the dietary questionnaires through the standardised EPIC Nutrient Database [17]. Participants in the lowest and highest 1% of the cohort distribution of the ratio of reported total energy intake to energy requirement were excluded from the current study (n = 736). The Mediterranean dietary pattern as used here is characterised by a high consumption of unrefined cereals, fruits, vegetables, olive oil, and legumes; a moderate consumption of dairy products (mostly cheese and yogurt); moderate wine consumption; a moderate-to-high consumption of fish; and a low consumption of meat and meat products [18],[19]. Adherence to the Mediterranean diet was assessed using the relative Mediterranean diet score that has previously been associated with the risk of incident T2D in InterAct [20]. This score included nine nutritional components characteristic of the Mediterranean diet: seven potentially beneficial components (vegetables, legumes, fruits and nuts, cereals, fish and seafood, olive oil, and moderate alcohol consumption) and two potentially detrimental components (meat and meat products, and dairy products). The overall relative Mediterranean diet score was divided into categories reflecting low (0–6 points), medium (7–10 points), and high (11–18 points) adherence to the Mediterranean diet on the basis of previously published cutoff points [21]. DNA and Genotyping DNA was not available for Danish (n = 4,037) participants, leaving a total maximum sample size of 10,348 incident cases and 14,671 random sub-cohort participants with DNA available, including 13,394 non-diabetic InterAct sub-cohort participants. Hence, of the original 27,779 InterAct participants, a maximum of 23,742 were eligible for genetic analyses. Of these, a total of 19,651 participants, including 8,582 incident cases and 11,069 non-diabetic sub-cohort participants, had DNA available for genotyping (Table S1). DNA was extracted from up to 1 ml of buffy coat for each individual from a citrated blood sample. Standard procedures on an automated Autopure LS DNA extraction system (Qiagen) with PUREGENE chemistry (Qiagen) were used, and the DNA was hydrated overnight prior to further processing. DNA samples were quantified by PicoGreen assay (Quant-iT) and normalised to 50 ng/ µl. A total of 10,027 participants (4,644 cases) were selected across all except the Danish centres for genome-wide genotyping using the Illumina 660W-Quad BeadChip at the Wellcome Trust Sanger Institute. Samples were randomly selected from those successfully genotyped on Sequenom or Taqman platforms (based on DNA concentration, call rate, and gender matching sex chromosome genotype), with the number of individuals selected per centre being proportional to the percentage of total cases in that centre. Of these, a total of 9,431 samples passed quality control criteria following genome-wide genotyping (call rate >95%, no conflict between gender and X chromosome heterozygosity, concordant candidate genotyping, not an outlier for autosomal heterozygosity or ethnicity), with 99.9% and 99.5% of included samples at call rates of 97% and 99%, respectively. In addition, 9,794 InterAct participants with available DNA and not selected for genome-wide measurement were genotyped using the Illumina Cardio-Metabochip [16]. Genotyping was completed in 9,467 InterAct samples, with 99.8% and 98.2% of samples at call rates of 97% and 99%, respectively. Genotype information and quality metrics for the 49 T2D loci in the InterAct random sub-cohort are included in Table S4. Genotype distributions were in Hardy-Weinberg equilibrium using a Bonferroni-adjusted significance level of p 0.1). Confounding by obesity did not explain any of the interactions observed with lifestyle factors, as the results were largely unchanged when BMI was included in the models as a covariate (Figure 3). For individual SNP interactions, a total of 27 of the 343 tested associations reached statistical significance at 0.002
                Bookmark

                Author and article information

                Contributors
                Role: professor
                Role: professor
                Role: professor
                Role: professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2018
                13 June 2018
                : 361
                : bmj.k2173
                Affiliations
                [1 ]JM-USDA-HNRCA at Tufts University, Boston, MA, USA
                [2 ]Centro Nacional Investigaciones Cardiovasculares, Madrid, Spain
                [3 ]IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
                [4 ]Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
                [5 ]National University of Singapore, Singapore
                [6 ]Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
                Author notes
                Correspondence to: J M Ordovas jose.ordovas@ 123456tufts.edu
                Article
                ordj044763
                10.1136/bmj.k2173
                6081996
                29898881
                d58f3694-a6f8-436d-a4b7-2c2f33ea061e
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                Categories
                Analysis
                Science and Politics of Nutrition

                Medicine
                Medicine

                Comments

                Comment on this article