54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TET proteins and the control of cytosine demethylation in cancer

      research-article
      , ,
      Genome Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discovery that ten-eleven translocation (TET) proteins are α-ketoglutarate-dependent dioxygenases involved in the conversion of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine has revealed new pathways in the cytosine methylation and demethylation process. The description of inactivating mutations in TET2 suggests that cellular transformation is in part caused by the deregulation of this 5-mC conversion. The direct and indirect deregulation of methylation control through mutations in DNA methyltransferase and isocitrate dehydrogenase (IDH) genes, respectively, along with the importance of cytosine methylation in the control of normal and malignant cellular differentiation have provided a conceptual framework for understanding the early steps in cancer development. Here, we review recent advances in our understanding of the cytosine methylation cycle and its implication in cellular transformation, with an emphasis on TET enzymes and 5-hmC. Ongoing clinical trials targeting the activity of mutated IDH enzymes provide a proof of principle that DNA methylation is targetable, and will trigger further therapeutic applications aimed at controlling both early and late stages of cancer development.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study.

          Drug treatments for patients with high-risk myelodysplastic syndromes provide no survival advantage. In this trial, we aimed to assess the effect of azacitidine on overall survival compared with the three commonest conventional care regimens. In a phase III, international, multicentre, controlled, parallel-group, open-label trial, patients with higher-risk myelodysplastic syndromes were randomly assigned one-to-one to receive azacitidine (75 mg/m(2) per day for 7 days every 28 days) or conventional care (best supportive care, low-dose cytarabine, or intensive chemotherapy as selected by investigators before randomisation). Patients were stratified by French-American-British and international prognostic scoring system classifications; randomisation was done with a block size of four. The primary endpoint was overall survival. Efficacy analyses were by intention to treat for all patients assigned to receive treatment. This study is registered with ClinicalTrials.gov, number NCT00071799. Between Feb 13, 2004, and Aug 7, 2006, 358 patients were randomly assigned to receive azacitidine (n=179) or conventional care regimens (n=179). Four patients in the azacitidine and 14 in the conventional care groups received no study drugs but were included in the intention-to-treat efficacy analysis. After a median follow-up of 21.1 months (IQR 15.1-26.9), median overall survival was 24.5 months (9.9-not reached) for the azacitidine group versus 15.0 months (5.6-24.1) for the conventional care group (hazard ratio 0.58; 95% CI 0.43-0.77; stratified log-rank p=0.0001). At last follow-up, 82 patients in the azacitidine group had died compared with 113 in the conventional care group. At 2 years, on the basis of Kaplan-Meier estimates, 50.8% (95% CI 42.1-58.8) of patients in the azacitidine group were alive compared with 26.2% (18.7-34.3) in the conventional care group (p<0.0001). Peripheral cytopenias were the most common grade 3-4 adverse events for all treatments. Treatment with azacitidine increases overall survival in patients with higher-risk myelodysplastic syndromes relative to conventional care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma.

            Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene body methylation can alter gene expression and is a therapeutic target in cancer.

              DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression, yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the overexpression of genes, many of which are involved in metabolic processes regulated by c-MYC. Downregulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may, therefore, be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene overexpression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                laurianne.scourzic@inserm.fr
                enguerran.mouly@inserm.fr
                olivier.bernard@inserm.fr
                Journal
                Genome Med
                Genome Med
                Genome Medicine
                BioMed Central (London )
                1756-994X
                29 January 2015
                29 January 2015
                2015
                : 7
                : 1
                : 9
                Affiliations
                [ ]Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France
                [ ]Institut Gustave Roussy, 94805 Villejuif, France
                [ ]University Paris 11 Sud, 91405 Orsay, France
                Article
                134
                10.1186/s13073-015-0134-6
                4308928
                25632305
                d593756a-1289-4353-91b7-0e13ad4f8823
                © Scourzic et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article