107
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Food Reservoir for Escherichia coli Causing Urinary Tract Infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Closely related strains of Escherichia coli have been shown to cause extraintestinal infections in unrelated persons. This study tests whether a food reservoir may exist for these E. coli. Isolates from 3 sources over the same time period (2005–2007) and geographic area were compared. The sources comprised prospectively collected E. coli isolates from women with urinary tract infection (UTI) (n = 353); retail meat (n = 417); and restaurant/ready-to-eat foods (n = 74). E. coli were evaluated for antimicrobial drug susceptibility and O:H serotype and compared by using 4 different genotyping methods. We identified 17 clonal groups that contained E. coli isolates (n = 72) from >1 source. E. coli from retail chicken (O25:H4-ST131 and O114:H4-ST117) and honeydew melon (O2:H7-ST95) were indistinguishable from or closely related to E. coli from human UTIs. This study provides strong support for the role of food reservoirs or foodborne transmission in the dissemination of E. coli causing common community-acquired UTIs.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15.

          Concomitant with the recent emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs), Escherichia coli has become the enterobacterial species most affected by ESBLs. Multiple locales are encountering CTX-M-positive E. coli, including specifically CTX-M-15. To gain insights into the mechanism underlying this phenomenon, we assessed clonality and diversity of virulence profiles within an international collection of CTX-M-15-positive E. coli. Forty-one ESBL-positive E. coli isolates from eight countries and three continents (Europe, Asia and North America) were selected for study based on suspected clonality. Phylogenetic group, ERIC2 PCR profile, O H serotype, AmpC variant and antibiotic susceptibility were determined. Multilocus sequence typing (MLST) and PFGE provided additional discrimination. Virulence potential was inferred by detection of 46 virulence factor (VF) genes. Thirty-six (88%) of the 41 E. coli isolates exhibited the same set of core characteristics: phylogenetic group B2, ERIC2 PCR profile 1, serotype O25:H4, AmpC EC6, ciprofloxacin resistance and MLST profile ST131. By PFGE, the 36 isolates constituted one large cluster at the 68% similarity level; this comprised 17 PFGE groups (defined at 85% similarity), some of which included strains from different countries. The 36 isolates exhibited highly (91% to 100%) similar VF profiles. We describe a broadly disseminated, CTX-M-15-positive and virulent E. coli clonal group with highly homogeneous virulence genotypes and subgroups exhibiting highly similar PFGE profiles, suggesting recent emergence. Understanding how this clone has emerged and successfully disseminated within the hospital and community, including across national boundaries, should be a public health priority.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem.

            Escherichia coli is probably the best-known bacterial species and one of the most frequently isolated organisms from clinical specimens. Despite this, underappreciation and misunderstandings exist among medical professionals and the lay public alike regarding E. coli as an extraintestinal pathogen. Underappreciated features include (i) the wide variety of extraintestinal infections E. coli can cause, (ii) the high incidence and associated morbidity, mortality, and costs of these diverse clinical syndromes, (iii) the pathogenic potential of different groups of E. coli strains for causing intestinal versus extraintestinal disease, and (iv) increasing antimicrobial resistance. In this era in which health news often sensationalizes uncommon infection syndromes or pathogens, the strains of E. coli that cause extraintestinal infection are an increasingly important endemic problem and underappreciated "killers". Billions of health care dollars, millions of work days, and hundreds of thousands of lives are lost each year to extraintestinal infections due to E. coli. New treatments and prevention measures will be needed for improved outcomes and a diminished disease burden.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens.

              Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                January 2010
                : 16
                : 1
                : 88-95
                Affiliations
                [1]McGill University, Montréal, Québec, Canada (C. Vincent, C. Galanakis, P.-P. Tellier, P.A. Tellis, A.R. Manges)
                [2]University of Guelph, Guelph, Ontario, Canada (P. Boerlin, R.J. Reid-Smith)
                [3]Public Health Agency of Canada, Saint-Hyacinthe, Québec (D. Daignault, L. Dutil)
                [4]INRS-Institut Armand-Frappier, Laval, Québec (C.M. Dozois)
                [5]Public Health Agency of Canada, Guelph (R.J. Reid-Smith, K. Ziebell)
                Author notes
                Address for correspondence: Amee R. Manges, Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Ave W 36B, Montréal, Québec H3A 1A2, Canada; email: amee.manges@ 123456mcgill.ca
                Article
                09-1118
                10.3201/eid1601.091118
                2874376
                20031048
                d5952610-d0ac-40a6-a2f6-91333c3c6ae3
                History
                Categories
                Research

                Infectious disease & Microbiology
                food reservoir,bacteria,retail meat,extraintestinal infections,escherichia coli,research,urinary tract infections,molecular epidemiology,antimicrobial resistance,foodborne transmission

                Comments

                Comment on this article