77
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum cholesterol selectively regulates glucocorticoid sensitivity through activation of JNK

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE −/− mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic–pituitary–adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE −/− mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Glucocorticoid resistance in inflammatory diseases.

          Glucocorticoid resistance or insensitivity is a major barrier to the treatment of several common inflammatory diseases-including chronic obstructive pulmonary disease and acute respiratory distress syndrome; it is also an issue for some patients with asthma, rheumatoid arthritis, and inflammatory bowel disease. Several molecular mechanisms of glucocorticoid resistance have now been identified, including activation of mitogen-activated protein (MAP) kinase pathways by certain cytokines, excessive activation of the transcription factor activator protein 1, reduced histone deacetylase-2 (HDAC2) expression, raised macrophage migration inhibitory factor, and increased P-glycoprotein-mediated drug efflux. Patients with glucocorticoid resistance can be treated with alternative broad-spectrum anti-inflammatory treatments, such as calcineurin inhibitors and other immunomodulators, or novel anti-inflammatory treatments, such as inhibitors of phosphodiesterase 4 or nuclear factor kappaB, although these drugs are all likely to have major side-effects. An alternative treatment strategy is to reverse glucocorticoid resistance by blocking its underlying mechanisms. Some examples of this approach are inhibition of p38 MAP kinase, use of vitamin D to restore interleukin-10 response, activation of HDAC2 expression by use of theophylline, antioxidants, or phosphoinositide-3-kinase-delta inhibitors, and inhibition of macrophage migration inhibitory factor and P-glycoprotein.
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding.

            Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with coregulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate that a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model in which the basal occupancy of transcription factors acts to prime chromatin and direct inducible transcription factors to select regions in the genome. Copyright © 2011 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of transcription by a protein methyltransferase.

              The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.

                Author and article information

                Journal
                J Endocrinol
                J. Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                November 2014
                26 August 2014
                : 223
                : 2
                : 155-166
                Affiliations
                [1 ]Manchester Centre for Nuclear Hormone Research in Disease and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester , AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
                [2 ]Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester , CTF Building, Grafton Street, Manchester, M13 9PT, UK
                Author notes
                Correspondence should be addressed to L C Matthews or D W Ray; Emails: laura.matthews@ 123456manchester.ac.uk or david.w.ray@ 123456manchester.ac.uk
                Article
                JOE140456
                10.1530/JOE-14-0456
                4191185
                25161081
                d5b3da31-7462-4bfc-bad8-cc4c0af7a3fd
                © 2014 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 19 August 2014
                : 25 August 2014
                Categories
                Research

                Endocrinology & Diabetes
                glucocorticoid receptor,inflammatory disease,cholesterol,transcription factors,signal transduction

                Comments

                Comment on this article

                Related Documents Log